- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer.
(i) $(-1, -2), (1, 0), (-1, 2), (-3, 0)$
(ii) $(-3, 5), (3, 1), (0, 3), (-1, -4)$
(iii) $(4, 5), (7, 6), (4, 3), (1, 2)$
To do:
We have to find the quadrilateral formed, if any, by the given points.
Solution:
Let the given points be $A(-1, -2), B(1, 0), C(-1, 2), D(-3, 0)$.
We know that,
The distance between two points $\mathrm{A}(x_{1}, y_{1})$ and $\mathrm{B}(x_{2}, y_{2})$ is $\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$.
Therefore,
$\mathrm{AB}=\sqrt{(1+1)^{2}+(0+2)^{2}}$
Squaring on both sides, we get, $\mathrm{AB}^{2}=(1+1)^{2}+(0+2)^{2}$
$=(2)^{2}+(2)^{2}$
$=4+4$
$=8$
$\mathrm{BC}^{2}=(-1-1)^{2}+(2-0)^{2}$
$=(-2)^{2}+(2)^{2}$
$=4+4$
$=8$
$\mathrm{CD}^{2}=(-3+1)^{2}+(0-2)^{2}$
$=(-2)^{2}+(-2)^{2}$
$=4+4$
$=8$
$\mathrm{DA}^{2}=(-1+3)^{2}+(-2+0)^{2}$
$=(2)^{2}+(-2)^{2}$
$=4+4$
$=8$
$\mathrm{AC}^{2}=(-1+1)^{2}+(2+2)^{2}$
$=(0)^{2}+(4)^{2}$
$=0+16$
$=16$
$\mathrm{BD}^{2}=(-3-1)^{2}+(0-0)^{2}$
$=(-4)^{2}+0$
$=16$
Here,
$AB^2=BC^2=CD^2=DA^2$ and $AC^2=BD^2$
This implies,
$AB=BC=CD=DA$ and $AC=BD$.
All the sides are equal and the diagonals are equal to each other.
Therefore, the quadrilateral formed by the points $A, B, C, D$ is a square.
(ii) Let the given points be $A (-3, 5), B (3, 1), C (0, 3), D (-1, -4)$.
We know that,
The distance between two points $\mathrm{A}(x_{1}, y_{1})$ and $\mathrm{B}(x_{2}, y_{2})$ is $\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$.
Therefore,
$\mathrm{AB}=\sqrt{(3+3)^{2}+(1-5)^{2}}$
Squaring on both sides, we get,
$\mathrm{AB}^{2}=(3+3)^{2}+(1-5)^{2}$
$=(6)^{2}+(-4)^{2}$
$=36+16$
$=52$
$\mathrm{BC}^{2}=(0-3)^{2}+(3-1)^{2}$
$=(-3)^{2}+(2)^{2}$
$=9+4$
$=13$
$\mathrm{CD}^{2}=(-1-0)^{2}+(-4-3)^{2}$
$=(-1)^{2}+(-7)^{2}$
$=1+49$
$=50$
$\mathrm{DA}^{2}=(-3+1)^{2}+(5+4)^{2}$
$=(-2)^{2}+(9)^{2}$
$=4+81$
$=85$
$\mathrm{AC}^{2}=(0+3)^{2}+(3-5)^{2}$
$=(3)^{2}+ (-2)^{2}$
$=9+4$
$=13$
In $\Delta \mathrm{ABC}$,
$\mathrm{AB}=\sqrt{52}, \mathrm{AC}=\sqrt{13}, \mathrm{BC}=\sqrt{13}$
$\mathrm{AC}+\mathrm{BC}=\sqrt{13}+\sqrt{13}=2 \sqrt{13}$
$\mathrm{AB}=\sqrt{52}=2\sqrt{13}$
$\Rightarrow \mathrm{AC}+\mathrm{BC}=\mathrm{AB}$
This implies, the points $A, B ,C$ are collinear.
Therefore, $\Delta \mathrm{ABC}$ is not possible.
Hence, $\mathrm{ABCD}$ is not a quadrilateral.
(iii) Let the given points be $A (4, 5), B (7, 6), C (4, 3), D (1, 2)$.
We know that,
The distance between two points $\mathrm{A}(x_{1}, y_{1})$ and $\mathrm{B}(x_{2}, y_{2})$ is $\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$.
Therefore,
$\mathrm{AB}=\sqrt{(7-4)^{2}+(6-5)^{2}}$
Squaring on both sides, we get,
$\mathrm{AB}^{2}=(7-4)^{2}+(6-5)^{2}$
$=(3)^{2}+(1)^{2}$
$=9+1$
$=10$
$B C^{2}=(4-7)^{2}+(3-6)^{2}$
$=(3)^{2}+(-3)^{2}$
$=9+9$
$=18$
$\mathrm{CD}^{2}=(1-4)^{2}+(2-3)^{2}$
$=(-3)^{2}+(-1)^{2}$
$=9+1$
$=10$
$\mathrm{DA}^{2}=(4-1)^{2}+(5-2)^{2}$
$=(3)^{2}+(3)^{2}$
$=9+9$
$=18$
$\mathrm{AC}^{2}=(4-4)^{2}+(3-5)^{2}$
$=(0)^{2}+(-2)^{2}$
$=0+4$
$=4$
$\mathrm{BD}^{2}=(1-7)^{2}+(2-6)^{2}$
$=(-6)^{2}+(-4)^{2}$
$=36+16$
$=52$
Here,
$AB^2=CD^2$, $BC^2=DA^2$ and $AC^2≠BD^2$
This implies,
$A B=C D, B C=D A$ and $AC≠BD$
Opposite sides are equal and diagonals are not equal.
Therefore, the quadrilateral formed by the points $A, B, C, D$ is a parallelogram.