- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Simplify:
(i) $ \left(4^{-1} \times 3^{-1}\right)^{2} $
(ii) $ \left(5^{-1}\div6^{-1}\right)^{3} $
(iii) $ \left(2^{-1}+3^{-1}\right)^{-1} $
(iv) $ \left(3^{-1} \times 4^{-1}\right)^{-1} \times 5^{-1} $
To do:
We have to simplify the given expressions.
Solution:
We know that,
$a^{-m}=\frac{1}{a^{m}}$
Therefore,
(i) $(4^{-1} \times 3^{-1})^{2}=(\frac{1}{4} \times \frac{1}{3})^{2}$
$=(\frac{1}{12})^{2}$
$=\frac{1}{12} \times \frac{1}{12}$
$=\frac{1}{144}$
(ii) $(5^{-1} \div 6^{-1})^{3}=(\frac{1}{5} \div \frac{1}{6})^{3}$
$=(\frac{1}{5} \times \frac{6}{1})^{3}$
$=(\frac{6}{5})^{3}$
$=\frac{6^3}{5^3}$
$=\frac{216}{125}$
(iii) $(2^{-1}+3^{-1})^{-1}=(\frac{1}{2}+\frac{1}{3})^{-1}$
$=(\frac{3+2}{6})^{-1}$
$=(\frac{5}{6})^{-1}$
$=\frac{6}{5}$
(iv) $(3^{-1} \times 4^{-1})^{-1} \times 5^{-1}=(\frac{1}{3} \times \frac{1}{4})^{-1} \times 5^{-1}$
$=(\frac{1}{12})^{-1} \times \frac{1}{5}$
$=(12)^{1} \times \frac{1}{5}$
$=\frac{12}{5}$
- Related Articles
- Simplify:(i) \( \left\{4^{-1} \times 3^{-1}\right\}^{2} \)(ii) \( \left\{5^{-1}\div6^{-1}\right\}^{3} \)(iii) \( \left(2^{-1}+3^{-1}\right)^{-1} \)(iv) \( \left\{3^{-1} \times 4^{-1}\right\}^{-1} \times 5^{-1} \)(v) \( \left(4^{-1}-5^{-1}\right)^{-1}\div3^{-1} \)
- Simplify:(i) \( \left\{\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\right\} \div\left(\frac{1}{4}\right)^{-3} \)(ii) \( \left(3^{2}-2^{2}\right) \times\left(\frac{2}{3}\right)^{-3} \)(iii) \( \left\{\left(\frac{1}{2}\right)^{-1} \times(-4)^{-1}\right\}^{-1} \)(iv) \( \left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{-2}\right]^{-1} \)(v) \( \left\{\left(\frac{2}{3}\right)^{2}\right\}^{3} \times\left(\frac{1}{3}\right)^{-4} \times 3^{-1} \times 6^{-1} \)
- Find the values of each of the following(i) \( 3^{-1}+4^{-1} \)(ii) \( \left(3^{0}+4^{-1}\right) \times 2^{2} \)(iii) \( \left(3^{-1}+4^{-1}+5^{-1}\right)^{0} \)(iv) \( \left\{\left(\frac{1}{3}\right)^{-1}-\left(\frac{1}{4}\right)^{-1}\right\}^{-1} \)
- Find the values of each of the following:(i) \( \left(\frac{1}{2}\right)^{-1}+\left(\frac{1}{3}\right)^{-1}+\left(\frac{1}{4}\right)^{-1} \)(ii) \( \left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{3}\right)^{-2}+\left(\frac{1}{4}\right)^{-2} \)(iii) \( \left(2^{-1} \times 4^{-1}\right) \div 2^{-2} \)(iv) \( \left(5^{-1} \times 2^{-1}\right) \div 6^{-1} \)
- Simplify:\( \left\{3^{-1} \times(-4)^{-1}\right\} \times 6^{-1} \)
- Find $x$, if(i) \( \left(\frac{1}{4}\right)^{-4} \times\left(\frac{1}{4}\right)^{-8}=\left(\frac{1}{4}\right)^{-4 x} \)(ii) \( \left(\frac{-1}{2}\right)^{-19}\div\left(\frac{-1}{2}\right)^{8}=\left(\frac{-1}{2}\right)^{-2 x+1} \)(iii) \( \left(\frac{3}{2}\right)^{-3} \times\left(\frac{3}{2}\right)^{5}=\left(\frac{3}{2}\right)^{2 x+1} \)(iv) \( \left(\frac{2}{5}\right)^{-3} \times\left(\frac{2}{5}\right)^{15}=\left(\frac{2}{5}\right)^{2+3 x} \)(v) \( \left(\frac{5}{4}\right)^{-x}\div\left(\frac{5}{4}\right)^{-4}=\left(\frac{5}{4}\right)^{5} \)(vi) \( \left(\frac{8}{3}\right)^{2 x+1} \times\left(\frac{8}{3}\right)^{5}=\left(\frac{8}{3}\right)^{x+2} \)
- Simplify:(i) \( \left(3^{2}+2^{2}\right) \times\left(\frac{1}{2}\right)^{3} \)(ii) \( \left(3^{2}-2^{2}\right) \times\left(\frac{2}{3}\right)^{-3} \)(iii) \( \left[\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\right] \div\left(\frac{1}{4}\right)^{-3} \)(iv) \( \left(2^{2}+3^{2}-4^{2}\right) \div\left(\frac{3}{2}\right)^{2} \)
- Simplify:\( \left[\left(\frac{1}{3}\right)^{-1}-\left(\frac{2}{5}\right)^{-1}\right]^{-2} \div\left(\frac{3}{4}\right)^{-3} \)
- Write each of the following in exponential form:(i) \( \left(\frac{3}{2}\right)^{-1} \times\left(\frac{3}{2}\right)^{-1} \times\left(\frac{3}{2}\right)^{-1} \times\left(\frac{3}{2}\right)^{-1} \)(ii) \( \left(\frac{2}{5}\right)^{-2} \times\left(\frac{2}{5}\right)^{-2} \times\left(\frac{2}{5}\right)^{-2} \)
- Express each of the following as a rational number in the form $\frac{p}{q}$:(i) \( 6^{-1} \)(ii) \( (-7)^{-1} \)(iii) \( \left(\frac{1}{4}\right)^{-1} \)(iv) \( (-4)^{-1} \times\left(\frac{-3}{2}\right)^{-1} \)(v) \( \left(\frac{3}{5}\right)^{-1} \times\left(\frac{5}{2}\right)^{-1} \)
- Simplify:\( \left(4^{-1}+3^{-1}+6^{-2}\right)^{-1} \)
- Find \( x \) if\( \left(\frac{1}{3}\right)^{-4} \times\left(\frac{1}{3}\right)^{-8}=\left(\frac{1}{3}\right)^{-4 x} \).
- Simplify:\( \frac{1}{6^{-2}}\left[\left(\frac{2}{3}\right)^{2}\right]^{-1} \times\left(\frac{4}{9}\right) \times 7^{0} \)
- Evaluate : $\left(2^{-1}-3^{-1}\right)^{-1}+\left(6^{-1}-8^{-1}\right)^{-1}$
- The value of \( \frac{\left((243)^{1 / 5}\right)^{4}}{\left((32)^{1 / 5}\right)^{4}}=? \)A. \( \quad \frac{3}{2} \)B. \( \left(\frac{3}{2}\right)^{-4} \)C. \( \frac{1}{2^{-4} \times 3^{-4}} \)D. \( \frac{1}{2^{4} \times 3^{-4}} \)

Advertisements