- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to find the standardized coefficients of a linear regression model in R?
The standardized coefficients in regression are also called beta coefficients and they are obtained by standardizing the dependent and independent variables. Standardization of the dependent and independent variables means that converting the values of these variables in a way that the mean and the standard deviation becomes 0 and 1 respectively. We can find the standardized coefficients of a linear regression model by using scale function while creating the model.
Example
Consider the below data frame −
> set.seed(99) > x<-rnorm(10,1.5) > y<-rnorm(10,2) > df1<-data.frame(x,y) > df1
Output
x y 1 1.7139625 1.2542310 2 1.9796581 2.9215504 3 1.5878287 2.7500544 4 1.9438585 -0.5085540 5 1.1371621 -1.0409341 6 1.6226740 2.0002658 7 0.6361548 1.6059810 8 1.9896243 0.2549723 9 1.1358831 2.4986315 10 0.2057580 2.2709538
Creating the regression model −
> Model1<-lm(y~x,data=df1) > summary(Model1)
Output
Call: lm(formula = y ~ x, data = df1) Residuals: Min 1Q Median 3Q Max -2.5458 -0.7047 0.1862 0.9178 1.7566 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.9635 1.2055 1.629 0.142 x -0.4034 0.7988 -0.505 0.627 Residual standard error: 1.453 on 8 degrees of freedom Multiple R-squared: 0.0309, Adjusted R-squared: -0.09024 F-statistic: 0.2551 on 1 and 8 DF, p-value: 0.6272
Creating the regression model for standardized coefficients −
> Model1_standardized_coefficients<-lm(scale(y)~scale(x),data=df1) > summary(Model1_standardized_coefficients)
Output
Call: lm(formula = scale(y) ~ scale(x), data = df1) Residuals: Min 1Q Median 3Q Max -1.8288 -0.5063 0.1338 0.6593 1.2619 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -3.701e-18 3.302e-01 0.000 1.000 scale(x) -1.758e-01 3.480e-01 -0.505 0.627 Residual standard error: 1.044 on 8 degrees of freedom Multiple R-squared: 0.0309, Adjusted R-squared: -0.09024 F-statistic: 0.2551 on 1 and 8 DF, p-value: 0.6272
Let’s have a look at another example −
Example
> y<-rnorm(10,2.5) > x1<-rnorm(10,0.2) > x2<-rnorm(10,0.5) > x3<-rnorm(10,1.5) > df2<-data.frame(x1,x2,x3,y) > df2
Output
x1 x2 x3 y 1 1.573053947 0.6329786 -0.07655243 3.598922 2 0.650256559 -1.1792643 2.12408260 3.252513 3 0.053706144 0.2215204 1.83022068 2.440583 4 0.328097240 -1.0524110 1.10187774 2.155431 5 -2.094720947 -0.8796993 0.41860307 2.722668 6 -1.166568921 -0.8570566 1.42307794 3.051786 7 0.002520447 -0.4211372 0.97446338 3.183643 8 0.268085782 -0.3668177 1.89128965 1.954121 9 0.290503410 2.1566444 0.81954674 1.132564 10 0.522759967 0.3449203 0.75130307 3.900052
> Model2_standardized_coefficients<- lm(scale(y)~scale(x1)+scale(x2)+scale(x3),data=df2) > summary(Model2_standardized_coefficients)
Output
Call: lm(formula = scale(y) ~ scale(x1) + scale(x2) + scale(x3), data = df2) Residuals: Min 1Q Median 3Q Max -1.4389 -0.5336 0.1917 0.3699 1.2726 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -8.577e-17 2.970e-01 0.000 1.000 scale(x1) 3.896e-01 3.415e-01 1.141 0.297 scale(x2) -6.845e-01 3.682e-01 -1.859 0.112 scale(x3) -4.808e-01 3.409e-01 -1.410 0.208 Residual standard error: 0.9392 on 6 degrees of freedom Multiple R-squared: 0.4119, Adjusted R-squared: 0.1179 F-statistic: 1.401 on 3 and 6 DF, p-value: 0.331
- Related Articles
- How to find residual variance of a linear regression model in R?
- How to display p-value with coefficients in stargazer output for linear regression model in R?
- How to extract the regression coefficients, standard error of coefficients, t scores, and p-values from a regression model in R?
- How to find the point estimate using regression model in R?
- How to find the degrees of freedom of residual from a regression model in R?
- How to find the high leverage values for a regression model in R?
- How to create polynomial regression model in R?
- How to test for the difference between two regression coefficients in R?
- How to find the mean squared error for linear model in R?
- How to find the confidence interval for the predictive value using regression model in R?
- How to create an only interaction regression model in R?
- How to extract p-value and R-squared from a linear regression in R?
- How to add title to regression model using stargazer in R?
- How to remove interaction from regression model in stargazer in R?
- How to perform group-wise linear regression for a data frame in R?

Advertisements