- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to create normal quantile-quantile plot for a logarithmic model in R?
How to create normal quantile-quantile plot for a logarithmic model in R?
A logarithmic model is the type of model in which we take the log of the dependent variable and then create the linear model in R. If we want to create the normal quantile-quantile plot for a logarithmic model then plot function can be used with the model object name and which = 2 argument must be introduced to get the desired plot.
Example1
> x1<-rnorm(100,5,1) > x1
Output
[1] 4.735737 3.631521 5.522580 5.538314 5.580952 4.341072 4.736899 2.455681 [9] 4.042295 5.534034 4.717607 6.146558 4.466849 5.444437 5.390151 4.491595 [17] 4.227620 4.223362 5.452378 5.690660 5.321716 5.269895 2.810042 4.295378 [25] 5.767740 3.939896 6.213647 4.608487 5.094318 4.621997 4.801568 6.329819 [33] 4.339835 3.172058 6.031193 5.123346 5.673534 5.668435 5.754537 4.164556 [41] 6.630504 5.209786 7.171595 4.713524 4.382267 5.204943 5.895252 4.413933 [49] 5.491437 3.806081 6.283097 4.892824 3.698107 4.758340 3.612643 4.670258 [57] 5.376201 6.440996 3.589660 4.990421 6.649452 5.549918 4.224869 5.604002 [65] 4.667142 5.522634 4.820425 4.278682 4.611169 3.801012 4.774964 4.678297 [73] 4.087518 5.705981 5.812739 4.585449 3.328274 3.626282 4.637604 3.707011 [81] 5.661713 4.671823 6.033384 3.553500 3.945178 3.065177 4.260533 5.226990 [89] 4.852304 4.995663 5.229401 6.588605 5.375225 6.089018 4.199044 6.520236 [97] 5.569930 7.400434 6.291279 4.593149
Example
> y1<-rpois(100,10) > y1
Output
[1] 10 13 10 11 12 10 7 10 15 6 6 7 8 11 14 16 7 11 14 11 7 7 9 7 7 [26] 13 8 11 12 14 13 8 12 6 9 15 10 8 9 12 11 12 9 10 12 15 11 14 12 13 [51] 8 8 19 10 7 9 9 16 13 8 8 6 9 11 11 18 11 12 12 15 7 12 10 8 10 [76] 10 14 11 5 9 6 11 13 8 9 10 6 6 13 12 14 12 9 11 11 8 9 12 13 5
> Model1<-lm(log(y1)~x1) > summary(Model1)
Call:
lm(formula = log(y1) ~ x1)
Residuals:
Min 1Q Median 3Q Max -0.69827 -0.19657 0.01667 0.19465 0.61978
Coefficients:
Estimate Std. Error t value Pr(>|t|) (Intercept) 2.39474 0.15197 15.758 <2e-16 *** x1 -0.01895 0.03011 -0.629 0.531 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.2895 on 98 degrees of freedom
Multiple R-squared: 0.004024, Adjusted R-squared: -0.006139
F-statistic: 0.3959 on 1 and 98 DF, p-value: 0.5307
Creating the normal quantile-quantile plot:
> plot(Model1,which=2)
Output:
Example2
> x2<-rpois(100,5) > x2
Output
[1] 3 7 13 4 6 2 4 3 2 7 4 6 3 11 6 5 5 6 6 2 3 7 8 3 1 [26] 8 5 2 2 3 7 6 7 4 7 2 4 3 4 2 5 2 4 5 3 5 8 5 3 3 [51] 6 2 8 3 4 7 3 5 5 3 7 4 7 6 6 6 10 5 4 3 5 7 3 3 5 [76] 4 9 3 7 8 7 2 6 5 7 5 6 6 5 3 9 9 5 4 2 5 5 5 6 4
Example2
> y2<-rpois(100,12) > y2
Output
[1] 16 8 10 12 11 11 6 15 3 12 8 11 9 12 8 18 7 13 10 17 15 17 15 10 11 [26] 12 16 12 17 13 11 17 16 14 15 10 12 9 10 14 9 6 12 17 14 9 10 9 13 5 [51] 16 12 17 11 10 12 13 18 12 14 19 9 14 11 14 12 6 7 6 16 9 10 11 15 10 [76] 11 8 13 7 16 19 18 8 13 15 11 7 12 7 9 9 14 14 13 15 10 14 11 13 11
> Model2<-lm(log(y2)~x2) > summary(Model2)
Call:
lm(formula = log(y2) ~ x2)
Residuals:
Min 1Q Median 3Q Max -1.31858 -0.17210 0.04939 0.21912 0.50892
Coefficients:
Estimate Std. Error t value Pr(>|t|) (Intercept) 2.409861 0.081191 29.681 <2e-16 *** x2 0.003665 0.014863 0.247 0.806 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.327 on 98 degrees of freedom
Multiple R-squared: 0.00062, Adjusted R-squared: -0.009578
F-statistic: 0.0608 on 1 and 98 DF, p-value: 0.8057
Creating the normal quantile-quantile plot:
> plot(Model2,which=2)
Output:
- Related Articles
- How to create quantile regression plot with larger width of lines using ggplot2 in R?
- How to find the quantiles in R without quantile name?
- How to create normal probability plot in R with confidence interval bands?
- Write a program in Python to calculate the default float quantile value for all the element in a Series
- How to create confusion matrix for a rpart model in R?
- How to create density plot for categories in R?
- How to create a colored box for base R plot?
- How to create a polynomial model in R?
- How to create a classification model using svm for multiple categories in R?
- How to create a staircase plot in R?
- How to create a bar plot with bars for missing values in R?
- How to create polynomial regression model in R?
- How to create ACF plot in R?
- How to create a plot in R with gridlines using plot function?
- How to show the Logarithmic plot of a cumulative distribution function in Matplotlib?
