- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the distance between the following pairs of points
(i) $(2, 3), (4, 1)$
(ii) $(-5, 7), (-1, 3)$
(iii) $(a, b), (-a, -b)$
To do:
We have to find the distance between the given pairs of points.
Solution:
We know that,
The distance between two points $A(x_{1}, y_{1})$ and $B(x_{2}, y_{2})$ is $\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$
Therefore,
(i) The distance between the points $(2, 3)$ and $(4,1)$
$=\sqrt{[4-(2)]^{2}+(1-3)^{2}}$
$=\sqrt{(4-2)^{2}+(-2)^{2}}$
$=\sqrt{(2)^{2}+(-2)^{2}}$
$=\sqrt{4+4}$
$=\sqrt{8}$
$=2\sqrt2$
The distance between the given pair of points is $2\sqrt2$ units.
(ii) The distance between the points $(-5, 7)$ and $(-1, 3)$
$=\sqrt{[-1-(-5)]^{2}+(3-7)^{2}}$
$=\sqrt{(-1+5)^{2}+(-4)^{2}}$
$=\sqrt{(4)^{2}+(-4)^{2}}$
$=\sqrt{16+16}$
$=\sqrt{32}$
$=4\sqrt2$
The distance between the given pair of points is $4\sqrt2$ units.
(iii) The distance between the points $(a, b)$ and $(-a, -b)$
$=\sqrt{[-a-(a)]^{2}+(-b-b)^{2}}$
$=\sqrt{(-a-a)^{2}+(-2b)^{2}}$
$=\sqrt{(-2a)^{2}+(-2b)^{2}}$
$=\sqrt{4a^2+4b^2}$
$=2\sqrt{a^2+b^2}$
The distance between the given pair of points is $2\sqrt{a^2+b^2}$ units.
- Related Articles
- Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer.(i) $(-1, -2), (1, 0), (-1, 2), (-3, 0)$(ii) $(-3, 5), (3, 1), (0, 3), (-1, -4)$(iii) $(4, 5), (7, 6), (4, 3), (1, 2)$
- Find:(i) $\frac{1}{4}$ of (a) $\frac{1}{4}$(b) $\frac{3}{5}$ (c) $\frac{4}{3}$(ii) $\frac{1}{7}$ of (a) $\frac{2}{9}$ (b) $\frac{6}{5}$ (c) $\frac{3}{10}$
- Simplify (i) +7 + 1 - 3 + 4 -2 - 5 + 7 - 2 + 1 -6 + 5(ii)+2 - 3 + 2 -5 + 1 - 3 + 8 - 4 + 3
- i)a) $\frac{1}{4} of \frac{1}{4}$b) $\frac{1}{4} of \frac{3}{5} $c) $\frac{1}{4} of \frac{4}{3} $ii) a) $\frac{1}{ 7} of \frac{2}{ 9}$b) $\frac{1}{ 7} of \frac{6}{5}$c) $\frac{1}{ 7} of \frac{3}{10}$
- Evalute:(i) $(5)^{-2}$(ii) $(-3)^{-2}$(iii) $(\frac{1}{3})^{-4}$(iv) $(\frac{-1}{2})^{-1}$
- Convert the following ratios to percentage: $( a).\ 3:1,\ ( b).\ 2:3:5,\ ( c).\ 1:4,\ ( d).\ 1:2:5$.
- Find: (a) $\frac{1}{2}$ of (i) $2\frac{3}{4}$ (ii) $4\frac{2}{9}$(b) $\frac{5}{8}$ of (i) $3\frac{5}{6}$ (ii) $9\frac{2}{3}$
- Which is greater in each of the following:$(i)$. $\frac{2}{3},\ \frac{5}{2}$$(ii)$. $-\frac{5}{6},\ -\frac{4}{3}$$(iii)$. $-\frac{3}{4},\ \frac{2}{-3}$$(iv)$. $-\frac{1}{4},\ \frac{1}{4}$$(v)$. $-3\frac{2}{7\ },\ -3\frac{4}{5}$
- Write the following rational numbers in ascending order:$(i)$. $\frac{-3}{5},\ \frac{-2}{5},\ \frac{-1}{5}$$(ii)$. $\frac{1}{3},\ \frac{-2}{9},\ \frac{-4}{3}$$(iii)$. $\frac{-3}{7},\ \frac{-3}{2},\ \frac{-3}{4}$
- Observe the following pattern$1 + 3 = 2^2$$1 + 3 + 5 = 3^2$$1+3 + 5 + 7 = 4^2$and write the value of $1 + 3 + 5 + 7 + 9 +…………$ upto $n$ terms.
- (i) 1 - 8(ii) 4 - (-3)(iii) -10 - (-7)
- In each of the following find the value of $k$ for which the points are collinear.(i) $(7, -2), (5, 1), (3, k)$(ii) $(8, 1), (k, -4), (2, -5)$
- Find the values of each of the following(i) \( 3^{-1}+4^{-1} \)(ii) \( \left(3^{0}+4^{-1}\right) \times 2^{2} \)(iii) \( \left(3^{-1}+4^{-1}+5^{-1}\right)^{0} \)(iv) \( \left\{\left(\frac{1}{3}\right)^{-1}-\left(\frac{1}{4}\right)^{-1}\right\}^{-1} \)
- Find five rational numbers between.(i) \( \frac{2}{3} \) and \( \frac{4}{5} \)(ii) \( \frac{-3}{2} \) and \( \frac{5}{3} \)(iii) \( \frac{1}{4} \) and \( \frac{1}{2} \).
- Observe the following pattern$1=\frac{1}{2}\{1 \times(1+1)\}$$1+2=\frac{1}{2}\{2 \times(2+1)\}$$1+2+3=\frac{1}{2}\{3 \times(3+1)\}$$1+2+3+4=\frac{1}{2}\{4 \times(4+1)\}$and find the values of each of the following:(i) $1 + 2 + 3 + 4 + 5 +….. + 50$(ii)$31 + 32 +… + 50$
