
- C++ Basics
- C++ Home
- C++ Overview
- C++ Environment Setup
- C++ Basic Syntax
- C++ Comments
- C++ Data Types
- C++ Variable Types
- C++ Variable Scope
- C++ Constants/Literals
- C++ Modifier Types
- C++ Storage Classes
- C++ Operators
- C++ Loop Types
- C++ Decision Making
- C++ Functions
- C++ Numbers
- C++ Arrays
- C++ Strings
- C++ Pointers
- C++ References
- C++ Date & Time
- C++ Basic Input/Output
- C++ Data Structures
- C++ Object Oriented
- C++ Classes & Objects
- C++ Inheritance
- C++ Overloading
- C++ Polymorphism
- C++ Abstraction
- C++ Encapsulation
- C++ Interfaces
C++ Program to Perform Left Rotation on a Binary Search Tree
A Binary Search Tree is a sorted binary tree in which all the nodes have following two properties −
The right sub-tree of a node has all keys greater than to its parent node's key.
The left sub-tree of a node has all keys less than to its parent node's key. Each node should not have more than two children.
Tree rotation is an operation that changes the structure without interfering with the order of the elements on a binary tree. It moves one node up in the tree and one node down. It is used to change the shape of the tree, and to decrease its height by moving smaller subtrees down and larger subtrees up, resulting in improved performance of many tree operations. The direction of a rotation depends on the side which the tree nodes are shifted upon whilst others say that it depends on which child takes the root’s place. This is a C++ program to perform Left Rotation on a Binary Search Tree.
Function Description:
height(avl *) : It calculate the height of the given AVL tree.
difference(avl *): It calculate the difference between height of sub trees of given tree
avl *rr_rotat(avl *): A right-right rotation is a combination of right rotation followed by right rotation.
avl *ll_rotat(avl *): A left-left rotation is a combination of left rotation followed by left rotation.
avl *lr_rotat(avl*): A left-right rotation is a combination of left rotation followed by right rotation.
avl *rl_rotat(avl *): It is a combination of right rotation followed by left rotation.
avl * balance(avl *): It perform balance operation to the tree by getting balance factor
avl * insert(avl*, int): It perform insert operation. Insert values in the tree using this function.
show(avl*, int): It display the values of the tree.
inorder(avl *): Traverses a tree in an in-order manner.
preorder(avl *): Traverses a tree in a pre-order manner.
postorder(avl*): Traverses a tree in a post-order manner.
Example
#include<iostream> #include<cstdio> #include<sstream> #include<algorithm> #define pow2(n) (1 << (n)) using namespace std; struct avl { int d; struct avl *l; struct avl *r; }*r; class avl_tree { public: int height(avl *); int difference(avl *); avl *rr_rotat(avl *); avl *ll_rotat(avl *); avl *lr_rotat(avl*); avl *rl_rotat(avl *); avl * balance(avl *); avl * insert(avl*, int); void show(avl*, int); void inorder(avl *); void preorder(avl *); void postorder(avl*); avl_tree() { r = NULL; } }; int avl_tree::height(avl *t) { int h = 0; if (t != NULL) { int l_height = height(t->l); int r_height = height(t->r); int max_height = max(l_height, r_height); h = max_height + 1; } return h; } int avl_tree::difference(avl *t) { int l_height = height(t->l); int r_height = height(t->r); int b_factor = l_height - r_height; return b_factor; } avl *avl_tree::rr_rotat(avl *parent) { avl *t; t = parent->r; parent->r = t->l; t->l = parent; cout<<"Right-Right Rotation"; return t; } avl *avl_tree::ll_rotat(avl *parent) { avl *t; t = parent->l; parent->l = t->r; t->r = parent; cout<<"Left-Left Rotation"; return t; } avl *avl_tree::lr_rotat(avl *parent) { avl *t; t = parent->l; parent->l = rr_rotat(t); cout<<"Left-Right Rotation"; return ll_rotat(parent); } avl *avl_tree::rl_rotat(avl *parent) { avl *t; t= parent->r; parent->r = ll_rotat(t); cout<<"Right-Left Rotation"; return rr_rotat(parent); } avl *avl_tree::balance(avl *t) { int bal_factor = difference(t); if (bal_factor > 1) { if (difference(t->l) > 0) t = ll_rotat(t); else t = lr_rotat(t); } else if (bal_factor < -1) { if (difference(t->r) > 0) t= rl_rotat(t); else t = rr_rotat(t); } return t; } avl *avl_tree::insert(avl *r, int v) { if (r == NULL) { r= new avl; r->d = v; r->l = NULL; r->r= NULL; return r; } else if (v< r->d) { r->l= insert(r->l, v); r = balance(r); } else if (v >= r->d) { r->r= insert(r->r, v); r = balance(r); } return r; } void avl_tree::show(avl *p, int l) { int i; if (p != NULL) { show(p->r, l+ 1); cout<<" "; if (p == r) cout << "Root -> "; for (i = 0; i < l&& p != r; i++) cout << " "; cout << p->d; show(p->l, l + 1); } } void avl_tree::inorder(avl *t) { if (t == NULL) return; inorder(t->l); cout << t->d << " "; inorder(t->r); } void avl_tree::preorder(avl *t) { if (t == NULL) return; cout << t->d << " "; preorder(t->l); preorder(t->r); } void avl_tree::postorder(avl *t) { if (t == NULL) return; postorder(t ->l); postorder(t ->r); cout << t->d << " "; } int main() { int c, i; avl_tree avl; while (1) { cout << "1.Insert Element into the tree" << endl; cout << "2.show Balanced AVL Tree" << endl; cout << "3.InOrder traversal" << endl; cout << "4.PreOrder traversal" << endl; cout << "5.PostOrder traversal" << endl; cout << "6.Exit" << endl; cout << "Enter your Choice: "; cin >> c; switch (c) { case 1: cout << "Enter value to be inserted: "; cin >> i; r= avl.insert(r, i); break; case 2: if (r == NULL) { cout << "Tree is Empty" << endl; continue; } cout << "Balanced AVL Tree:" << endl; avl.show(r, 1); cout<<endl; break; case 3: cout << "Inorder Traversal:" << endl; avl.inorder(r); cout << endl; break; case 4: cout << "Preorder Traversal:" << endl; avl.preorder(r); cout << endl; break; case 5: cout << "Postorder Traversal:" << endl; avl.postorder(r); cout << endl; break; case 6: exit(1); break; default: cout << "Wrong Choice" << endl; } } return 0; }
Output
1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 13 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 10 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 15 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 5 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 11 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 4 Left-Left Rotation1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 8 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 16 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 3 Inorder Traversal: 4 5 8 10 11 13 15 16 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 4 Preorder Traversal: 10 5 4 8 13 11 15 16 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 5 Postorder Traversal: 4 8 5 11 16 15 13 10 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 14 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 3 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 7 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 9 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 52 Right-Right 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 6
- Related Articles
- C++ Program to Perform Right Rotation on a Binary Search Tree
- C++ Program to Perform Dictionary Operations in a Binary Search Tree
- C++ Program to Perform Uniform Binary Search
- Python Program to Sort using a Binary Search Tree
- C++ Program to Search for an Element in a Binary Search Tree
- C++ Program to Check Whether a Given Tree is Binary Search Tree
- C++ Program to Implement Randomized Binary Search Tree
- Perform Binary Search on ArrayList with Java Collections
- Binary Tree to Binary Search Tree Conversion in C++
- How to perform binary search on an array in java?
- C++ Program to Implement self Balancing Binary Search Tree
- C++ Program to Implement a Binary Search Tree using Linked Lists
- Difference between Binary Tree and Binary Search Tree
- Optimal Binary Search Tree
- C++ Program to Perform Preorder Recursive Traversal of a Given Binary Tree
