
- C++ Basics
- C++ Home
- C++ Overview
- C++ Environment Setup
- C++ Basic Syntax
- C++ Comments
- C++ Data Types
- C++ Variable Types
- C++ Variable Scope
- C++ Constants/Literals
- C++ Modifier Types
- C++ Storage Classes
- C++ Operators
- C++ Loop Types
- C++ Decision Making
- C++ Functions
- C++ Numbers
- C++ Arrays
- C++ Strings
- C++ Pointers
- C++ References
- C++ Date & Time
- C++ Basic Input/Output
- C++ Data Structures
- C++ Object Oriented
- C++ Classes & Objects
- C++ Inheritance
- C++ Overloading
- C++ Polymorphism
- C++ Abstraction
- C++ Encapsulation
- C++ Interfaces
C++ Program to Perform Right Rotation on a Binary Search Tree
A Binary Search Tree is a sorted binary tree in which all the nodes have following two properties −
The right sub-tree of a node has a key greater than to its parent node's key.
The left sub-tree of a node has a key less than or equal to its parent node's key.
Each node should not have more than two children.
Tree rotation is an operation that changes the structure without interfering with the order of the elements on a binary tree. It moves one node up in the tree and one node down. It is used to change the shape of the tree, and to decrease its height by moving smaller subtrees down and larger subtrees up, resulting in improved performance of many tree operations. The direction of a rotation depends on the side which the tree nodes are shifted upon whilst others say that it depends on which child takes the root’s place. This is a C++ program to perform Left Rotation on a Binary Search Tree.
Algorithm
Begin Create a structure avl to declare variables data d, a left pointer l and a right pointer r. Declare a class avl_tree to declare following functions: height() - To calculate height of the tree by max function. Difference() - To calculate height difference of the tree. rr_rotat() - For right-right rotation of the tree. ll_rotat() - For left-left rotation of the tree. lr_rotat() - For left-right rotation of the tree. rl_rotat() - For right-left rotation of the tree. balance() - Balance the tree by getting balance factor. Put the difference in bal_factor. If bal_factor>1 balance the left subtree. If bal_factor<-1 balance the right subtree. insert() - To insert the elements in the tree. show() - To print the tree. inorder() - To print inorder traversal of the tree. preorder() - To print preorder traversal of the tree. postorder() - To print postorder traversal of the tree. In main(), perform switch operation and call the functions as per choice. End.
Example
#include<iostream> #include<cstdio> #include<sstream> #include<algorithm> #define pow2(n) (1 << (n)) using namespace std; struct avl { int d; struct avl *l; struct avl *r; }*r; class avl_tree { public: int height(avl *); int difference(avl *); avl *rr_rotat(avl *); avl *ll_rotat(avl *); avl *lr_rotat(avl*); avl *rl_rotat(avl *); avl * balance(avl *); avl * insert(avl*, int); void show(avl*, int); void inorder(avl *); void preorder(avl *); void postorder(avl*); avl_tree() { r = NULL; } }; int avl_tree::height(avl *t) { int h = 0; if (t != NULL) { int l_height = height(t->l); int r_height = height(t->r); int max_height = max(l_height, r_height); h = max_height + 1; } return h; } int avl_tree::difference(avl *t) { int l_height = height(t->l); int r_height = height(t->r); int b_factor = l_height - r_height; return b_factor; } avl *avl_tree::rr_rotat(avl *parent) { avl *t; t = parent->r; parent->r = t->l; t->l = parent; cout<<"Right-Right Rotation"; return t; } avl *avl_tree::ll_rotat(avl *parent) { avl *t; t = parent->l; parent->l = t->r; t->r = parent; cout<<"Left-Left Rotation"; return t; } avl *avl_tree::lr_rotat(avl *parent) { avl *t; t = parent->l; parent->l = rr_rotat(t); cout<<"Left-Right Rotation"; return ll_rotat(parent); } avl *avl_tree::rl_rotat(avl *parent) { avl *t; t= parent->r; parent->r = ll_rotat(t); cout<<"Right-Left Rotation"; return rr_rotat(parent); } avl *avl_tree::balance(avl *t) { int bal_factor = difference(t); if (bal_factor > 1) { if (difference(t->l) > 0) t = ll_rotat(t); else t = lr_rotat(t); } else if (bal_factor < -1) { if (difference(t->r) > 0) t= rl_rotat(t); else t = rr_rotat(t); } return t; } avl *avl_tree::insert(avl *r, int v) { if (r == NULL) { r= new avl; r->d = v; r->l = NULL; r->r= NULL; return r; } else if (v< r->d) { r->l= insert(r->l, v); r = balance(r); } else if (v >= r->d) { r->r= insert(r->r, v); r = balance(r); } return r; } void avl_tree::show(avl *p, int l) { int i; if (p != NULL) { show(p->r, l+ 1); cout<<" "; if (p == r) cout << "Root -> "; for (i = 0; i < l&& p != r; i++) cout << " "; cout << p->d; show(p->l, l + 1); } } void avl_tree::inorder(avl *t) { if (t == NULL) return; inorder(t->l); cout << t->d << " "; inorder(t->r); } void avl_tree::preorder(avl *t) { if (t == NULL) return; cout << t->d << " "; preorder(t->l); preorder(t->r); } void avl_tree::postorder(avl *t) { if (t == NULL) return; postorder(t ->l); postorder(t ->r); cout << t->d << " "; } int main() { int c, i; avl_tree avl; while (1) { cout << "1.Insert Element into the tree" << endl; cout << "2.show Balanced AVL Tree" << endl; cout << "3.InOrder traversal" << endl; cout << "4.PreOrder traversal" << endl; cout << "5.PostOrder traversal" << endl; cout << "6.Exit" << endl; cout << "Enter your Choice: "; cin >> c; switch (c) { case 1: cout << "Enter value to be inserted: "; cin >> i; r= avl.insert(r, i); break; case 2: if (r == NULL) { cout << "Tree is Empty" << endl; continue; } cout << "Balanced AVL Tree:" << endl; avl.show(r, 1); cout<<endl; break; case 3: cout << "Inorder Traversal:" << endl; avl.inorder(r); cout << endl; break; case 4: cout << "Preorder Traversal:" << endl; avl.preorder(r); cout << endl; break; case 5: cout << "Postorder Traversal:" << endl; avl.postorder(r); cout << endl; break; case 6: exit(1); break; default: cout << "Wrong Choice" << endl; } } return 0; }
Output
1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 13 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 10 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 15 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 5 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 11 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 4 Left-Left Rotation1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 8 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 16 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 3 Inorder Traversal: 4 5 8 10 11 13 15 16 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 4 Preorder Traversal: 10 5 4 8 13 11 15 16 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 5 Postorder Traversal: 4 8 5 11 16 15 13 10 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 14 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 3 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 7 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 9 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 52 Right-Right Rotation 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 6
- Related Articles
- C++ Program to Perform Left Rotation on a Binary Search Tree
- C++ Program to Perform Dictionary Operations in a Binary Search Tree
- C++ Program to Perform Uniform Binary Search
- C++ Program to Implement Randomized Binary Search Tree
- C++ Program to Search for an Element in a Binary Search Tree
- C++ Program to Check Whether a Given Tree is Binary Search Tree
- Binary Tree to Binary Search Tree Conversion in C++
- Golang program to perform binary search on a slice of custom structs
- C++ Program to Implement self Balancing Binary Search Tree
- C++ Program to Implement a Binary Search Tree using Linked Lists
- C++ Program to Perform Preorder Recursive Traversal of a Given Binary Tree
- C++ Program to Perform Inorder Recursive Traversal of a Given Binary Tree
- C++ Program to Perform Postorder Recursive Traversal of a Given Binary Tree
- Binary Tree to Binary Search Tree Conversion using STL set C++?
- Python Program to Sort using a Binary Search Tree
