Choose the correct answer from the given four options: The lengths of the diagonals of a rhombus are $ 16 \mathrm{~cm} $ and $ 12 \mathrm{~cm} $. Then, the length of the side of the rhombus is(A) $ 9 \mathrm{~cm} $(B) $ 10 \mathrm{~cm} $(C) $ 8 \mathrm{~cm} $(D) $ 20 \mathrm{~cm} $
Given:
The lengths of the diagonals of a rhombus are \( 16 \mathrm{~cm} \) and \( 12 \mathrm{~cm} \).
To do:
We have to find the length of the side of the rhombus.
Solution:
We know that,
Diagonals of a rhombus are perpendicular bisectors.
From the figure,
$AC=16\ cm$ and $BD=12\ cm$
$\angle AOB=90^o$
$AO=\frac{1}{2}AC$
$=\frac{1}{2}(16)\ cm$
$=8\ cm$
$BO=\frac{1}{2}BD$
$=\frac{1}{2}(12)\ cm$
$=6\ cm$
In right angled triangle AOB, by using Pythagoras theorem,
$AB^2=AO^2+OB^2$
$AB^2=8^2+6^2$
$=64+36$
$=100$
$AB=\sqrt{100}$
$=10\ cm$
The length of the side of the rhombus is $10\ cm$.
Related Articles Choose the correct answer from the given four options:If \( \triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}, \frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{9}{4}, \mathrm{AB}=18 \mathrm{~cm} \) and \( \mathrm{BC}=15 \mathrm{~cm} \), then \( \mathrm{PR} \) is equal to(A) \( 10 \mathrm{~cm} \)(B) \( 12 \mathrm{~cm} \)(C) \( \frac{20}{3} \mathrm{~cm} \)(D) \( 8 \mathrm{~cm} \)
Choose the correct answer from the given four options:It is given that \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm} \) and \( D F=7.5 \mathrm{~cm} \). Then, the following is true:(A) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=50^{\circ} \)(B) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=100^{\circ} \)(C) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ} \)(D) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \)
The area of rhombus whose diagonals are of lengths \( 10 \mathrm{~cm} \) and \( 8.2 \mathrm{~cm} \) is____$41\ cm^2$$82\ cm^2$$410\ cm^2$ $820\ cm^2$
The sides of a rhombus measures \( 12 \mathrm{~cm} \) and its diagonal is \( 10 \mathrm{~cm} \). What is the area of the rhombus?
In figure, if \( \angle \mathrm{A}=\angle \mathrm{C}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{BP}=15 \mathrm{~cm} \), \( \mathrm{AP}=12 \mathrm{~cm} \) and \( \mathrm{CP}=4 \mathrm{~cm} \), then find the lengths of \( \mathrm{PD} \) and CD."
It is given that \( \triangle \mathrm{ABC} \sim \Delta \mathrm{EDF} \) such that \( \mathrm{AB}=5 \mathrm{~cm} \), \( \mathrm{AC}=7 \mathrm{~cm}, \mathrm{DF}=15 \mathrm{~cm} \) and \( \mathrm{DE}=12 \mathrm{~cm} \). Find the lengths of the remaining sides of the triangles.
A right triangle \( \mathrm{ABC} \) with sides \( 5 \mathrm{~cm}, 12 \mathrm{~cm} \) and \( 13 \mathrm{~cm} \) is revolved about the side \( 12 \mathrm{~cm} \). Find the volume of the solid so obtained.
Find the perimeter of each of the following shapes :(a) A triangle of sides \( 3 \mathrm{~cm}, 4 \mathrm{~cm} \) and \( 5 \mathrm{~cm} \).(b) An equilateral triangle of side \( 9 \mathrm{~cm} \).(c) An isosceles triangle with equal sides \( 8 \mathrm{~cm} \) each and third side \( 6 \mathrm{~cm} \).
If \( \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm} \) and \( \mathrm{FD}=12 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
Two sides of a triangle are \( 12 \mathrm{~cm} \) and \( 14 \mathrm{~cm} \). The perimeter of the triangle is \( 36 \mathrm{~cm} \). What is the length of the third side?
Find the area of a quadrilateral \( \mathrm{ABCD} \) in which \( \mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm} \), \( \mathrm{DA}=5 \mathrm{~cm} \) and \( \mathrm{AC}=5 \mathrm{~cm} \).
Find the volume of the cuboid having the following dimensions.\( 12 \mathrm{cm} \times 5 \mathrm{cm} \times 8 \mathrm{cm} \).
If perimeter of the given figure is \( 68.3 \mathrm{~cm}, \) then the sum of \( x+y \) is(1) \( 8.6 \mathrm{~cm} \)(2) \( 8.1 \mathrm{~cm} \)(3) \( 9.6 \mathrm{~cm} \)(4) \( 9.8 \mathrm{~cm} \)"\n
The lengths of three consecutive sides of a quadrilateral circumscribing a circle are \( 4 \mathrm{~cm}, 5 \mathrm{~cm} \), and \( 7 \mathrm{~cm} \) respectively. Determine the length of the fourth side.
The lengths of the diagonals of a rhombus are $16\ cm$ and $12\ cm$. Then, find the length of the side of the rhombus.
Kickstart Your Career
Get certified by completing the course
Get Started