If \( \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm} \) and \( \mathrm{FD}=12 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).


Given:

\( \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm} \) and \( \mathrm{FD}=12 \mathrm{~cm} \)

To do:

We have to find the perimeter of \( \triangle \mathrm{ABC} \).

Solution:

$\Delta A B C  \sim \Delta D E F$

This implies,

$\frac{A B}{E D} =\frac{B C}{E F}=\frac{A C}{D F}$

$\frac{4}{6} =\frac{B C}{9}=\frac{A C}{12}$

$\frac{4}{6} =\frac{B C}{9}$

$B C=\frac{4 \times 9}{6}$

$BC=6 \mathrm{~cm}$

$A C=\frac{6 \times 12}{9}$

$AC=8 \mathrm{~cm}$

Therefore,

Perimeter of  $\Delta A B C =A B+B C+A C$

$=4+6+8$

$=18 \mathrm{~cm}$

The perimeter of \( \triangle \mathrm{ABC} \) is $18\ cm$.

Updated on: 10-Oct-2022

35 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements