- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm} $ and $ \mathrm{FD}=12 \mathrm{~cm} $, find the perimeter of $ \triangle \mathrm{ABC} $.
Given:
\( \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm} \) and \( \mathrm{FD}=12 \mathrm{~cm} \)
To do:
We have to find the perimeter of \( \triangle \mathrm{ABC} \).
Solution:
$\Delta A B C \sim \Delta D E F$
This implies,
$\frac{A B}{E D} =\frac{B C}{E F}=\frac{A C}{D F}$
$\frac{4}{6} =\frac{B C}{9}=\frac{A C}{12}$
$\frac{4}{6} =\frac{B C}{9}$
$B C=\frac{4 \times 9}{6}$
$BC=6 \mathrm{~cm}$
$A C=\frac{6 \times 12}{9}$
$AC=8 \mathrm{~cm}$
Therefore,
Perimeter of $\Delta A B C =A B+B C+A C$
$=4+6+8$
$=18 \mathrm{~cm}$
The perimeter of \( \triangle \mathrm{ABC} \) is $18\ cm$.
- Related Articles
- \( \Delta \mathrm{ABC} \sim \Delta \mathrm{XZY} \). If the perimeter of \( \triangle \mathrm{ABC} \) is \( 45 \mathrm{~cm} \), the perimeter of \( \triangle \mathrm{XYZ} \) is \( 30 \mathrm{~cm} \) and \( \mathrm{AB}=21 \mathrm{~cm} \), find \( \mathrm{XY} \).
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{ZYX} . \) If \( \mathrm{AB}=3 \mathrm{~cm}, \quad \mathrm{BC}=5 \mathrm{~cm} \), \( \mathrm{CA}=6 \mathrm{~cm} \) and \( \mathrm{XY}=6 \mathrm{~cm} \), find the perimeter of \( \Delta \mathrm{XYZ} \).
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} . \quad \) If \( \quad \mathrm{AB}+\mathrm{BC}=12 \mathrm{~cm} \) \( \mathrm{PQ}+\mathrm{QR}=15 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), find \( \mathrm{PR} \).
- It is given that \( \triangle \mathrm{ABC} \sim \Delta \mathrm{EDF} \) such that \( \mathrm{AB}=5 \mathrm{~cm} \), \( \mathrm{AC}=7 \mathrm{~cm}, \mathrm{DF}=15 \mathrm{~cm} \) and \( \mathrm{DE}=12 \mathrm{~cm} \). Find the lengths of the remaining sides of the triangles.
- In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=18 \mathrm{~cm} \). \( \mathrm{AC}=14 \mathrm{~cm} \) and \( \mathrm{AD}=14 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
- Choose the correct answer from the given four options:If \( \Delta \mathrm{ABC} \sim \Delta \mathrm{EDF} \) and \( \Delta \mathrm{ABC} \) is not similar to \( \Delta \mathrm{D} \mathrm{EF} \), then which of the following is not true?(A) \( \mathrm{BC} \cdot \mathrm{EF}=\mathrm{A} C \cdot \mathrm{FD} \)(B) \( \mathrm{AB}, \mathrm{EF}=\mathrm{AC} \cdot \mathrm{DE} \)(C) \( \mathrm{BC} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{EF} \)(D) \( \mathrm{BC}, \mathrm{DE}=\mathrm{AB}, \mathrm{FD} \)
- Choose the correct answer from the given four options:If \( \triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}, \frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{9}{4}, \mathrm{AB}=18 \mathrm{~cm} \) and \( \mathrm{BC}=15 \mathrm{~cm} \), then \( \mathrm{PR} \) is equal to(A) \( 10 \mathrm{~cm} \)(B) \( 12 \mathrm{~cm} \)(C) \( \frac{20}{3} \mathrm{~cm} \)(D) \( 8 \mathrm{~cm} \)
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{EFD} \). If \( \mathrm{AB}: \mathrm{BC}: \mathrm{CA}=4: 3: 5 \) and the perimeter of \( \triangle \mathrm{DEF} \) is \( 36 \mathrm{~cm} \), find all the sides of \( \triangle \mathrm{DEF} \).
- Choose the correct answer from the given four options:It is given that \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm} \) and \( D F=7.5 \mathrm{~cm} \). Then, the following is true:(A) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=50^{\circ} \)(B) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=100^{\circ} \)(C) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ} \)(D) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \)
- In figure, if \( \angle \mathrm{A}=\angle \mathrm{C}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{BP}=15 \mathrm{~cm} \), \( \mathrm{AP}=12 \mathrm{~cm} \) and \( \mathrm{CP}=4 \mathrm{~cm} \), then find the lengths of \( \mathrm{PD} \) and CD."
- Find the area of a quadrilateral \( \mathrm{ABCD} \) in which \( \mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm} \), \( \mathrm{DA}=5 \mathrm{~cm} \) and \( \mathrm{AC}=5 \mathrm{~cm} \).
- Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
- Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{B}=75^{\circ} \) and \( \mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm} \).
- Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{B}=45^{\circ} \) and \( \mathrm{AB}-\mathrm{AC}=3.5 \mathrm{~cm} \).
- In \( \Delta \mathrm{XYZ}, \mathrm{S} \) and \( \mathrm{T} \) are points of \( \mathrm{XY} \) and \( \mathrm{XZ} \) respectively and ST \( \| \mathrm{YZ} \). If \( \mathrm{XS}=4 \mathrm{~cm} \), \( \mathrm{XT}=8 \mathrm{~cm}, \mathrm{SY}=x-4 \mathrm{~cm} \) and \( \mathrm{TZ}=3 x-19 \mathrm{~cm} \) find the value of \( x \).

Advertisements