A right triangle $ \mathrm{ABC} $ with sides $ 5 \mathrm{~cm}, 12 \mathrm{~cm} $ and $ 13 \mathrm{~cm} $ is revolved about the side $ 12 \mathrm{~cm} $. Find the volume of the solid so obtained.
Given:
A right triangle \( \mathrm{ABC} \) with sides \( 5 \mathrm{~cm}, 12 \mathrm{~cm} \) and \( 13 \mathrm{~cm} \) is revolved about the side \( 12 \mathrm{~cm} \).
To do:
We have to find the volume of the solid so obtained.
Solution:
Let in a triangle $ABC$,
$AB=13\ cm$
$BC=5\ cm$
$CA=12\ cm$
On revolving the right angled triangle $ABC$ about the side $CA$, we get a cone as shown in the below figure.
Therefore,
Height of the cone $h=12\ cm$
Radius of the cone $r=5\ cm$
We know that,
Volume of a cone of radius $r$ and height $h$ is $\frac{1}{3} \pi r^2h$
This implies,
Volume of the cone $=\frac{1}{3} \times \pi \times 5^2 \times 12$
$=100\pi\ cm^3$
The volume of the cone so formed is $100\pi\ cm^3$.
Related Articles If \( \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm} \) and \( \mathrm{FD}=12 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
It is given that \( \triangle \mathrm{ABC} \sim \Delta \mathrm{EDF} \) such that \( \mathrm{AB}=5 \mathrm{~cm} \), \( \mathrm{AC}=7 \mathrm{~cm}, \mathrm{DF}=15 \mathrm{~cm} \) and \( \mathrm{DE}=12 \mathrm{~cm} \). Find the lengths of the remaining sides of the triangles.
Find the volume of the right circular cone with(i) radius \( 6 \mathrm{~cm} \), height \( 7 \mathrm{~cm} \)(ii) radius \( 3.5 \mathrm{~cm} \), height \( 12 \mathrm{~cm} \).
Two sides of a triangle are \( 12 \mathrm{~cm} \) and \( 14 \mathrm{~cm} \). The perimeter of the triangle is \( 36 \mathrm{~cm} \). What is its third side?
Find the volume of the cuboid having the following dimensions.\( 12 \mathrm{cm} \times 5 \mathrm{cm} \times 8 \mathrm{cm} \).
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} . \quad \) If \( \quad \mathrm{AB}+\mathrm{BC}=12 \mathrm{~cm} \) \( \mathrm{PQ}+\mathrm{QR}=15 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), find \( \mathrm{PR} \).
Is the triangle with sides \( 25 \mathrm{~cm}, 5 \mathrm{~cm} \) and \( 24 \mathrm{~cm} \) a right triangle? Give reasons for your answer.
Find the perimeter of each of the following shapes :(a) A triangle of sides \( 3 \mathrm{~cm}, 4 \mathrm{~cm} \) and \( 5 \mathrm{~cm} \).(b) An equilateral triangle of side \( 9 \mathrm{~cm} \).(c) An isosceles triangle with equal sides \( 8 \mathrm{~cm} \) each and third side \( 6 \mathrm{~cm} \).
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{ZYX} . \) If \( \mathrm{AB}=3 \mathrm{~cm}, \quad \mathrm{BC}=5 \mathrm{~cm} \), \( \mathrm{CA}=6 \mathrm{~cm} \) and \( \mathrm{XY}=6 \mathrm{~cm} \), find the perimeter of \( \Delta \mathrm{XYZ} \).
Two sides of a triangle are \( 12 \mathrm{~cm} \) and \( 14 \mathrm{~cm} \). The perimeter of the triangle is \( 36 \mathrm{~cm} \). What is the length of the third side?
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=18 \mathrm{~cm} \). \( \mathrm{AC}=14 \mathrm{~cm} \) and \( \mathrm{AD}=14 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
Find the perimeter of a triangle with sides measuring \( 10 \mathrm{~cm}, 14 \mathrm{~cm} \) and \( 15 \mathrm{~cm} \).
Choose the correct answer from the given four options:It is given that \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm} \) and \( D F=7.5 \mathrm{~cm} \). Then, the following is true:(A) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=50^{\circ} \)(B) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=100^{\circ} \)(C) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ} \)(D) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \)
\( \Delta \mathrm{ABC} \sim \Delta \mathrm{XZY} \). If the perimeter of \( \triangle \mathrm{ABC} \) is \( 45 \mathrm{~cm} \), the perimeter of \( \triangle \mathrm{XYZ} \) is \( 30 \mathrm{~cm} \) and \( \mathrm{AB}=21 \mathrm{~cm} \), find \( \mathrm{XY} \).
Find the area of a quadrilateral \( \mathrm{ABCD} \) in which \( \mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm} \), \( \mathrm{DA}=5 \mathrm{~cm} \) and \( \mathrm{AC}=5 \mathrm{~cm} \).
Kickstart Your Career
Get certified by completing the course
Get Started