
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 33676 Articles for Programming

397 Views
Assume, you have a dataframe and the minimum number of missing value column is, DataFrame is: Id Salary Age 0 1.0 20000.0 22.0 1 2.0 NaN 23.0 2 3.0 50000.0 NaN 3 NaN 40000.0 25.0 4 5.0 80000.0 NaN 5 6.0 NaN 25.0 6 7.0 350000.0 26.0 7 8.0 55000.0 27.0 8 9.0 60000.0 NaN 9 10.0 70000.0 24.0 lowest missing value column is: IdTo solve this, we will follow the steps given ... Read More

447 Views
Assume, you have a date_range of dates and the result for the total number of business days are, Dates are: DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-06', '2020-01-07', '2020-01-08', '2020-01-09', '2020-01-10', '2020-01-13', '2020-01-14', '2020-01-15', '2020-01-16', '2020-01-17', '2020-01-20', '2020-01-21', '2020-01-22', '2020-01-23', '2020-01-24', '2020-01-27', '2020-01-28', '2020-01-29', '2020-01-30', '2020-01-31'], dtype='datetime64[ns]', freq='B') Total number of days: 23Solution 1Define a function as business_days()set pd.bdate_range() function start ... Read More

152 Views
Assume, you have a dataframe and the result for flatten records in C and F order as, flat c_order: [10 12 25 13 3 12 11 14 24 15 6 14] flat F_order: [10 25 3 11 24 6 12 13 12 14 15 14]SolutionTo solve this, we will follow the steps given below −Define a dataframeApply df.values.ravel() function inside set an argument as order=’C’ and save it as C_order, C_order = df.values.ravel(order='C')Apply df.values.ravel() function inside set an argument as order=’F’ and save it as F_order, F_order = df.values.ravel(order='F')ExampleLet’s check the following code to get a better understanding ... Read More

114 Views
Assume, you have a dataframe and the result for orderDict with list of tuples are −OrderedDict([('Index', 0), ('Name', 'Raj'), ('Age', 13), ('City', 'Chennai'), ('Mark', 80)]) OrderedDict([('Index', 1), ('Name', 'Ravi'), ('Age', 12), ('City', 'Delhi'), ('Mark', 90)]) OrderedDict([('Index', 2), ('Name', 'Ram'), ('Age', 13), ('City', 'Chennai'), ('Mark', 95)])SolutionTo solve this, we will follow the steps given below −Define a dataframeSet for loop to access all the rows using df.itertuples() function inside set name=’stud’for row in df.itertuples(name='stud')Convert all the rows to orderDict with list of tuples using rows._asdict() function and save it as dict_row. Finally print the values, dict_row = row._asdict() print(dict_row)ExampleLet’s check the ... Read More

186 Views
Assume, you have a dataframe and the result for adjusted and non-adjusted EWM are −adjusted ewm: Id Age 0 1.000000 12.000000 1 1.750000 12.750000 2 2.615385 12.230769 3 2.615385 13.425000 4 4.670213 14.479339 non adjusted ewm: Id Age 0 1.000000 12.000000 1 1.666667 12.666667 2 2.555556 12.222222 3 2.555556 13.407407 4 4.650794 14.469136SolutionTo solve this, we will follow the steps given below −Define a dataframeCalculate adjusted ewm with delay 0.5 using df.ewm(com=0.5).mean().df.ewm(com=0.5).mean()Calculate non-adjusted ewm with delay 0.5 using df.ewm(com=0.5).mean().df.ewm(com=0.5, adjust=False).mean()Exampleimport numpy as np import pandas as pd df ... Read More

270 Views
SolutionTo solve this, we will follow the steps given below −Define a dataframeApply df.interpolate funtion inside method =’linear’, limit_direction =’forward’ and fill NaN limit = 2df.interpolate(method ='linear', limit_direction ='forward', limit = 2Exampleimport pandas as pd df = pd.DataFrame({"Id":[1, 2, 3, None, 5], "Age":[12, 12, 14, 13, None], "Mark":[80, 90, None, 95, 85], }) print("Dataframe is:",df) print("Interpolate missing values:") print(df.interpolate(method ='linear', limit_direction ='forward', limit = 2))OutputDataframe is: Id Age Mark 0 1.0 12.0 80.0 1 2.0 12.0 90.0 2 3.0 14.0 NaN 3 NaN 13.0 95.0 4 5.0 NaN 85.0 Interpolate missing values: Id Age Mark 0 1.0 12.0 80.0 1 2.0 12.0 90.0 2 3.0 14.0 92.5 3 4.0 13.0 95.0 4 5.0 13.0 85.0

271 Views
Assume, you have a dataframe and the result for renaming the axis is,Rename index: index Id Age Mark 0 1.0 12.0 80.0 1 2.0 12.0 90.0 2 3.0 14.0 NaN 3 NaN 13.0 95.0 4 5.0 NaN 85.0SolutionTo solve this, we will follow the steps given below −Define a dataframeApply df.rename_axis() function inside axis name as ‘index’ and set axis=1df.rename_axis('index',axis=1)Exampleimport pandas as pd df = pd.DataFrame({"Id":[1, 2, 3, None, 5], "Age":[12, 12, 14, 13, None], "Mark":[80, 90, None, 95, 85], }) print("Dataframe is:",df) print("Rename index:") df = df.rename_axis('index',axis=1) print(df)OutputDataframe is: Id Age Mark 0 1.0 12.0 80.0 1 2.0 12.0 90.0 2 3.0 14.0 NaN 3 NaN 13.0 95.0 4 5.0 NaN 85.0 Rename index: index Id Age Mark 0 1.0 12.0 80.0 1 2.0 12.0 90.0 2 3.0 14.0 NaN 3 NaN 13.0 95.0 4 5.0 NaN 85.0

524 Views
Assume you have two dataframes and the result for cross-tabulation is,Age 12 13 14 Mark 80 90 85 Id 1 1 0 0 2 0 1 0 3 1 0 0 4 0 1 0 5 0 0 1SolutionTo solve this, we will follow the steps given below −Define two dataframesApply df.crosstab() function inside index as ‘Id’ and columns as ‘Age’ and ‘Mark’. It is defined below,pd.crosstab(index=df['Id'],columns=[df['Age'],df1['Mark']])Exampleimport pandas as pd df = pd.DataFrame({'Id':[1,2,3,4,5],'Age':[12,13,12,13,14]}) df1 = pd.DataFrame({'Mark':[80,90,80,90,85]}) print(pd.crosstab(index=df['Id'],columns=[df['Age'],df1['Mark']]))OutputAge 12 13 14 Mark 80 90 85 Id 1 1 0 0 2 0 1 0 3 1 0 0 4 0 1 0 5 0 0 1

371 Views
The result for the length of elements in all column in a dataframe is, Dataframe is: Fruits City 0 Apple Shimla 1 Orange Sydney 2 Mango Lucknow 3 Kiwi Wellington Length of the elements in all columns Fruits City 0 5 6 1 6 6 2 5 7 3 4 10SolutionTo solve this, we will follow the steps given below −Define a dataframeUse df.applymap function inside lambda function to calculate the length of elements in all column asdf.applymap(lambda x:len(str(x)))ExampleLet’s check the following code to get ... Read More

390 Views
Assume, you have dataframe and the result for percentage change between Id and Age columns top 2 and bottom 2 valueId and Age-top 2 values Id Age 0 NaN NaN 1 1.0 0.0 Id and Age-bottom 2 values Id Age 3 0.000000 -0.071429 4 0.666667 0.000000SolutionTo solve this, we will follow the steps given below −Define a dataframeApply df[[‘Id’, ’Age’]].pct_change() inside slicing [0:2]df[['Id', 'Age']].pct_change()[0:2]Apply df[[‘Id’, ’Age’]].pct_change() inside slicing [-2:]df[['Id', 'Age']].pct_change()[0:2]ExampleLet’s check the following code to get a better understanding −import pandas as pd df = pd.DataFrame({"Id":[1, 2, 3, None, 5], ... Read More