
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 33676 Articles for Programming

4K+ Views
If we have a numeric column in an R data frame and the unique number of values in the column is low that means the numerical column can be treated as a factor. Therefore, we can convert numeric columns to factor. To do this using dplyr package, we can use mutate_if function of dplyr package.Loading dplyr package and converting numerical columns in BOD data set (available in base R) to factor columns −Examplelibrary(dplyr) str(BOD) 'data.frame': 6 obs. of 2 variables: $ Time : num 1 2 3 4 5 7 $ demand: num 8.3 10.3 19 16 15.6 19.8 - ... Read More

443 Views
Assume, you have a dataframe and the result for trim of minimum and the maximum threshold value, minimum threshold: Column1 Column2 0 30 30 1 34 30 2 56 30 3 78 50 4 30 90 maximum threshold: Column1 Column2 0 12 23 1 34 30 2 50 25 3 50 50 4 28 50 clipped dataframe is: Column1 Column2 0 30 30 1 34 30 2 50 30 3 ... Read More

306 Views
Assume, you have a dataframe and the result for quantify shape of a distribution is, kurtosis is: Column1 -1.526243 Column2 1.948382 dtype: float64 asymmetry distribution - skewness is: Column1 -0.280389 Column2 1.309355 dtype: float64SolutionTo solve this, we will follow the steps given below −Define a dataframeApply df.kurt(axis=0) to calculate the shape of distribution, df.kurt(axis=0)Apply df.skew(axis=0) to calculate unbiased skew over axis-0 to find asymmetry distribution, df.skew(axis=0)ExampleLet’s see the following code to get a better understanding −import pandas as pd data = {"Column1":[12, 34, 56, 78, 90], "Column2":[23, 30, 45, ... Read More

514 Views
SolutionAssume you have a dataframe and mean absolute deviation of rows and column is, mad of columns: Column1 0.938776 Column2 0.600000 dtype: float64 mad of rows: 0 0.500 1 0.900 2 0.650 3 0.900 4 0.750 5 0.575 6 1.325 dtype: float64To solve this, we will follow the steps given below −Define a dataframeCalculate mean absolute deviation of row as, df.mad()Calculate mean absolute deviation of row as, df.mad(axis=1)ExampleLet’s see the following code to get a better understanding −import pandas as pd data = {"Column1":[6, 5.3, 5.9, 7.8, 7.6, 7.45, 7.75], ... Read More

287 Views
Assume, you have Panel and the average of the first row is, Average of first row is: Column1 0.274124 dtype: float64SolutionTo solve this, we will follow the steps given below −Set data value as dictionary key is ‘Column1’ with value as pd.DataFrame(np.random.randn(5, 3))data = {'Column1' : pd.DataFrame(np.random.randn(5, 3))}Assign data to Panel and save it as pp = pd.Panel(data)Print the column using dict key Column1print(p['Column1'])Calculate theAverage of first row using, major_xs(0) ,p.major_xs(0).mean()ExampleLet’s see the following code to get a better understanding −import pandas as pd import numpy as np data = {'Column1' : pd.DataFrame(np.random.randn(5, 3))} p = pd.Panel(data) print("Panel values:") ... Read More

353 Views
SolutionAssume, you have a dataframe and minimum rank of a particular column, Id Name Age Rank 0 1 Adam 12 1.0 1 2 David 13 3.0 2 3 Michael 14 5.0 3 4 Peter 12 1.0 4 5 William 13 3.0To solve this, we will follow the steps given below −Define a dataframe.Assign df[‘Age’] column inside rank function to calculate the minimum rank for axis 0 is, df["Age"].rank(axis=0, method ='min', ascending=True)ExampleLet’s see the following code to get a better understanding −import pandas as pd data = {'Id': [1, 2, 3, ... Read More

195 Views
The result for a maximum value of the first column in panel ismaximum value of first column is ; Column1 1.377292SolutionTo solve this, we will follow the below approach −Set data value as dictionary key is ‘Column1’ with value as pd.DataFrame(np.random.randn(5, 3))data = {'Column1' : pd.DataFrame(np.random.randn(5, 3))}Assign data to Panel and save it as pp = pd.Panel(data)Print the column using dict key Column1print(p['Column1'])Calculate the maximum value of first column using, minor_xs(0) ,p.minor_xs(0).max()ExampleLet’s see the following code to get a better understanding −import pandas as pd import numpy as np data = {'Column1' : pd.DataFrame(np.random.randn(5, 3))} p = pd.Panel(data) print("Panel ... Read More

170 Views
Assume, you have a dataframe and the shift index by two periods in positive and negative direction is, shift the index by three periods in positive direction Id Age 2020-01-01 00:00:00 NaN NaN 2020-01-01 12:00:00 NaN NaN 2020-01-02 00:00:00 1.0 10.0 2020-01-02 12:00:00 2.0 12.0 2020-01-03 00:00:00 3.0 14.0 shift the index by three periods in negative direction Id Age 2020-01-01 00:00:00 3.0 14.0 2020-01-01 12:00:00 4.0 11.0 2020-01-02 00:00:00 5.0 13.0 2020-01-02 12:00:00 NaN NaN 2020-01-03 00:00:00 NaN NaNSolutionTo ... Read More

300 Views
Assume, you have a dataframe and the result for removing first duplicate rows are, Id Age 0 1 12 3 4 13 4 5 14 5 6 12 6 2 13 7 7 16 8 3 14 9 9 15 10 10 14SolutionTo solve this, we will follow the steps given below −Define a dataframeApply drop_duplicates function inside Id and Age column then assign keep initial value as ‘last’.df.drop_duplicates(subset=['Id', 'Age'], keep='last')Store the result inside same dataframe and print itExampleLet’s see the below implementation to get a better understanding −import pandas ... Read More

383 Views
Assume, you have a dataframe and the result for calculating covariance from grouped data and corresponding column as, Grouped data covariance is: mark1 mark2 subjects maths mark1 25.0 12.500000 mark2 12.5 108.333333 science mark1 28.0 50.000000 mark2 50.0 233.333333 Grouped data covariance between two columns: subjects maths 12.5 science 50.0 dtype: float64SolutionTo solve this, we will follow the steps given below −Define a dataframeApply groupby function inside dataframe subjects ... Read More