Programming Articles - Page 1074 of 3363

Python - Create a Pipeline in Pandas

AmitDiwan
Updated on 15-Sep-2021 08:16:08

316 Views

To create a pipeline in Pandas, we need to use the pipe() method. At first, import the required pandas library with an alias −import pandas as pdNow, create a DataFrame −dataFrame = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'], "Units": [100, 150, 110, 80, 110, 90] } ) Create a pipeline and call the upperFunc() custom function to convert column names to uppercase −pipeline = dataFrame.pipe(upperFunc)Following is the upperFun() to convert column names to uppercase −def upperFunc(dataframe): # Converting ... Read More

Python Pandas and Numpy - Concatenate multiindex into single index

AmitDiwan
Updated on 15-Sep-2021 08:06:10

569 Views

To concatenate multiindex into single index, at first, let us import the required Pandas and Numpy libraries with their respective aliases −import pandas as pd import numpy as np Create Pandas series −d = pd.Series([('Jacob', 'North'), ('Ami', 'East'), ('Ami', 'West'), ('Scarlett', 'South'), ('Jacob', 'West'), ('Scarlett', 'North')])Now, use the Numpy arrange() method −dataFrame = pd.Series(np.arange(1, 7), index=d) Let us now map and join −dataMap = dataFrame.index.map('_'.join)ExampleFollowing is the code −import pandas as pd import numpy as np # pandas series d = pd.Series([('Jacob', 'North'), ('Ami', 'East'), ('Ami', 'West'), ('Scarlett', 'South'), ('Jacob', 'West'), ('Scarlett', 'North')]) dataFrame = pd.Series(np.arange(1, 7), ... Read More

Python - Typecasting Pandas into set

AmitDiwan
Updated on 15-Sep-2021 07:58:46

200 Views

To typecast pandas into Set, use the set(). At first, let us create a DataFrame −dataFrame = pd.DataFrame( { "EmpName": ['John', 'Ted', 'Jacob', 'Scarlett', 'Ami', 'Ted', 'Scarlett'], "Zone": ['North', 'South', 'South', 'East', 'West', 'East', 'North'] } ) Typecast pandas to set and then take set union −set(dataFrame.EmpName) | set(dataFrame.Zone)ExampleFollowing is the complete code − import pandas as pd # Create DataFrame dataFrame = pd.DataFrame( { "EmpName": ['John', 'Ted', 'Jacob', 'Scarlett', 'Ami', ... Read More

Python Pandas – Find unique values from multiple columns

AmitDiwan
Updated on 29-Sep-2021 11:07:39

6K+ Views

To find unique values from multiple columns, use the unique() method. Let’s say you have Employee Records with “EmpName” and “Zone” in your Pandas DataFrame. The name and zone can get repeated since two employees can have similar names and a zone can have more than one employee. In that case, if you want unique Employee names, then use the unique() for DataFrame.At first, import the required library. Here, we have set pd as an alias −import pandas as pdAt first, create a DataFrame. Here, we have two columns −dataFrame = pd.DataFrame(    {       "EmpName": ['John', 'Ted', ... Read More

What is digital certificate and digital signature?

Bhanu Priya
Updated on 15-Sep-2021 07:49:04

4K+ Views

Let us begin by learning about the digital certificate.Digital CertificateIt is basically a certificate issued digitally, issued to verify a user's authenticity i.e., verifying the user sending a message is who he or she claims to be, and also to provide the receiver with the means to encode a reply.Whoever wants to or an individual who wants to send encrypted messages applies for a digital certificate from a Certificate Authority (CA).Need of digital certificateThe digital certificate allows entities to share their public key in an authenticated way. They are used in initializing and establishing secure SSL (Secure Sockets Layer) connections ... Read More

What are symmetric and Asymmetric key encryptions?

Bhanu Priya
Updated on 15-Sep-2021 07:47:02

2K+ Views

Let us understand the symmetric key encryption.Symmetric Key encryptionSymmetric-key encryption algorithms in cryptography use a single key or the same cryptographic keys (secret key) shared between the two parties for both encrypting plain-text and decrypting cipher-text. The keys could be identical or there could be a simple change to go between the two keys.It uses Diffie–Hellman key exchange or other public-key protocol to securely agree upon the sharing and usage of a fresh new secret key for each message.Asymmetric Key encryptionAsymmetric key encryption is an encryption technique using a pair of public and private keys to encrypt and decrypt plain-text ... Read More

Python Pandas - Finding the uncommon rows between two DataFrames

AmitDiwan
Updated on 15-Sep-2021 07:48:17

3K+ Views

To find the uncommon rows between two DataFrames, use the concat() method. Let us first import the required library with alias −import pandas as pdCreate DataFrame1 with two columns −dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Tesla', 'Bentley', 'Jaguar'], "Reg_Price": [1000, 1500, 1100, 800, 1100, 900] } )Create DataFrame2 with two columns −dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Tesla', 'Bentley', 'Jaguar'], "Reg_Price": [1000, 1300, ... Read More

How to shift a column in a Pandas DataFrame?

Rishikesh Kumar Rishi
Updated on 15-Sep-2021 07:23:13

8K+ Views

We can use the shift() method in Pandas to shift the columns of a DataFrame without having to rewrite the whole DataFrame. shift() takes the following parametersshift(self, periods=1, freq=None, axis=0, fill_value=None)periods  Number of periods to shift. It can take a negative number too.axis  It takes a Boolean value; 0 if you want to shift index and 1 if you want to shift columnfill_value  It will replace the missing value.Let's take an example and see how to use this shift() method.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame, df.Select a column and shift it by using df["column_name]=df.column_name.shift()Print ... Read More

How to append two DataFrames in Pandas?

Rishikesh Kumar Rishi
Updated on 22-Aug-2023 14:37:33

88K+ Views

To append the rows of one dataframe with the rows of another, we can use the Pandas append() function. With the help of append(), we can append columns too. Let's take an example and see how to use this method.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df1.Print the input DataFrame, df1.Create another DataFrame, df2, with the same column names and print it.Use the append method, df1.append(df2, ignore_index=True), to append the rows of df2 with df2.Print the resultatnt DataFrame.Exampleimport pandas as pd df1 = pd.DataFrame({"x": [5, 2], "y": [4, 7], "z": [9, 3]}) df2 = pd.DataFrame({"x": [1, 3], "y": ... Read More

How to get nth row in a Pandas DataFrame?

Rishikesh Kumar Rishi
Updated on 06-Sep-2023 21:48:02

43K+ Views

To get the nth row in a Pandas DataFrame, we can use the iloc() method. For example, df.iloc[4] will return the 5th row because row numbers start from 0.StepsMake two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print input DataFrame, df.Initialize a variable nth_row.Use iloc() method to get nth row.Print the returned DataFrame.Exampleimport pandas as pd df = pd.DataFrame( dict( name=['John', 'Jacob', 'Tom', 'Tim', 'Ally'], marks=[89, 23, 100, 56, 90], subjects=["Math", "Physics", "Chemistry", "Biology", "English"] ) ) ... Read More

Advertisements