- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 4493 Articles for Class 8

Updated on 13-Apr-2023 23:12:26
Given:The given equations are:(i) $\frac{45-2x}{15}-\frac{4x+10}{5}=\frac{15-14x}{9}$(ii) $\frac{5(7x+5)}{3}-\frac{23}{3}=13-\frac{4x-2}{3}$To do:We have to solve the given equations and check the results.Solution:To check the results we have to find the values of the variables and substitute them in the equation. Find the value of LHS and the value of RHS and check whether both are equal.(i) The given equation is $\frac{45-2x}{15}-\frac{4x+10}{5}=\frac{15-14x}{9}$$\frac{45-2x}{15}-\frac{4x+10}{5}=\frac{15-14x}{9}$On rearranging, we get, $\frac{45-2x}{15}-\frac{4x+10}{5}-\frac{15-14x}{9}=0$LCM of denominators $15, 5$ and $9$ is $45$$\frac{(45-2x)\times3-(4x+10)\times9-(15-14x) \times5}{45}=0$$\frac{3(45)-3(2x)-9(4x)-9(10)-5(15)+5(14x)}{45}=0$$\frac{135-6x-36x-90-75+70x}{45}=0$$\frac{135-165-42x+70x}{45}=0$$\frac{-30+28x}{45}=0$On cross multiplication, we get, $28x-30=45(0)$$28x-30=0$$28x=30$$x=\frac{30}{28}$$x=\frac{15}{14}$Verification:LHS $=\frac{45-2x}{15}-\frac{4x+10}{5}$$=\frac{45-2(\frac{15}{14})}{15}-\frac{4(\frac{15}{14})+10}{5}$$=\frac{45-\frac{15}{7}}{15}-\frac{\frac{30}{7}+10}{5}$$=\frac{45\times7-15}{7\times15}-\frac{30+10\times7}{7\times5}$$=\frac{315-15}{105}-\frac{30+70}{35}$$=\frac{300}{105}-\frac{100}{35}$$=\frac{60}{21}-\frac{20}{7}$$=\frac{60-20\times3}{21}$$=\frac{60-60}{21}$$=0$RHS $=\frac{15-14x}{9}$$=\frac{15-14(\frac{15}{14})}{9}$$=\frac{15-15}{9}$$=0$LHS $=$ RHSHence verified.(ii) The given equation is $\frac{5(7x+5)}{3}-\frac{23}{3}=13-\frac{4x-2}{3}$$\frac{5(7x+5)}{3}-\frac{23}{3}=13-\frac{4x-2}{3}$On rearranging, we get, $\frac{5(7x+5)}{3}+\frac{4x-2}{3}=\frac{23}{3}+13$LCM of $3$ and $1$ is $3$$\frac{5(7x)+5(5)+4x-2}{3}=\frac{23+13\times3}{3}$$\frac{35x+25+4x-2}{3}=\frac{23+39}{3}$$\frac{39x+23}{3}=\frac{62}{3}$On cross multiplication, we get, $39x+23=62$$39x=62-23$$39x=39$$x=\frac{39}{39}$$x=1$Verification:LHS $=\frac{5(7x+5)}{3}-\frac{23}{3}$$=\frac{5(7(1)+5)}{3}-\frac{23}{3}$$=\frac{5(7+5)}{3}-\frac{23}{3}$$=\frac{5(12)}{3}-\frac{23}{3}$$=\frac{60}{3}-\frac{23}{3}$$=\frac{60-23}{3}$$=\frac{37}{3}$RHS $=13-\frac{4x-2}{3}$$=13-\frac{4(1)-2}{3}$$=13-\frac{4-2}{3}$$=13-\frac{2}{3}$$=\frac{13\times3-2}{3})$$=\frac{39-2}{3}$$=\frac{37}{3}$LHS $=$ RHSHence ... Read More 
Updated on 13-Apr-2023 23:11:29
Given:The given equations are:(i) $\frac{2}{3x}-\frac{3}{2x}=\frac{1}{12}$(ii) $\frac{4x}{9}+\frac{1}{3}+\frac{13x}{108}=\frac{8x+19}{18}$To do:We have to solve the given equations and check the results.Solution:To check the results we have to find the values of the variables and substitute them in the equation. Find the value of LHS and the value of RHS and check whether both are equal.(i) The given equation is $\frac{2}{3x}-\frac{3}{2x}=\frac{1}{12}$$\frac{2}{3x}-\frac{3}{2x}=\frac{1}{12}$LCM of denominators $3x$ and $2x$ is $6x$$\frac{2\times2-3\times3}{6x}=\frac{1}{12}$$\frac{4-9}{6x}=\frac{1}{12}$$\frac{-5}{6x}=\frac{1}{12}$On cross multiplication, we get, $-5\times12=1\times6x$$6x=-60$$x=\frac{-60}{6}$$x=-10$Verification:LHS $=\frac{2}{3x}-\frac{3}{2x}$$=\frac{2}{3(-10)}-\frac{3}{2(-10)}$$=\frac{2}{-30}-\frac{3}{-20}$$=\frac{-1}{15}-(\frac{-3}{20}$$=\frac{-1}{15}+\frac{3}{20}$$=\frac{-1\times4+3\times3}{60}$ (LCM of $15$ and $20$ is $60$)$=\frac{-4+9}{60}$$=\frac{5}{60}$$=\frac{1}{12}$RHS $=\frac{1}{12}$LHS $=$ RHSHence verified.(ii) The given equation is $\frac{4x}{9}+\frac{1}{3}+\frac{13x}{108}=\frac{8x+19}{18}$$\frac{4x}{9}+\frac{1}{3}+\frac{13x}{108}=\frac{8x+19}{18}$On rearranging, we get, $\frac{4x}{9}+\frac{13x}{108}-\frac{8x+19}{18}=-\frac{1}{3}$LCM of $9, 108$ and $18$ is $108$$\frac{4x \times 12+13x \times1- (8x+19)\times6}{108}=-\frac{1}{3}$$\frac{48x+13x-48x-114}{108}=-\frac{1}{3}$$\frac{13x-114}{108}=-\frac{1}{3}$On ... Read More 
Updated on 13-Apr-2023 23:10:16
Given:The given equations are:(i) $\frac{9x+7}{2}-(x-\frac{(x-2)}{7})=36$(ii) $0.18(5x-4)=0.5x+0.8$To do:We have to solve the given equations and check the results.Solution:To check the results we have to find the values of the variables and substitute them in the equation. Find the value of LHS and the value of RHS and check whether both are equal.(i) The given equation is $\frac{9x+7}{2}-(x-\frac{(x-2)}{7})=36$$\frac{9x+7}{2}-(x-\frac{(x-2)}{7})=36$$\frac{9x+7}{2}-(\frac{7x-(x-2)}{7})=36$$\frac{9x+7}{2}-(\frac{7x-x+2}{7})=36$$\frac{9x+7}{2}-(\frac{6x+2)}{7})=36$LCM of denominators $2$ and $7$ is $14$$\frac{(9x+7)\times7-(6x+2)\times2}{14}=36$$\frac{7(9x)+7(7)-2(6x)-2(2)}{14}=36$$\frac{63x+49-12x-4}{14}=36$$\frac{51x+45}{14}=36$On cross multiplication, we get, $51x+45=36\times14$$51x+45=504$$51x=504-45$$51x=459$$x=\frac{459}{51}$$x=9$Verification:LHS $=\frac{9x+7}{2}-(x-\frac{(x-2)}{7})$$=\frac{9(9)+7}{2}-(9-\frac{(9-2)}{7})$$=\frac{81+7}{2}-(9-\frac{7}{7})$$=\frac{88}{2}-(9-1)$$=44-8$$=36$RHS $=36$LHS $=$ RHSHence verified.(ii) The given equation is $0.18(5x-4)=0.5x+0.8$$0.18(5x-4)=0.5x+0.8$$0.18(5x)-0.18(4)=0.5x+0.8$$0.9x-0.72=0.5x+0.8$On rearranging, we get, $0.9x-0.5x=0.8+0.72$$0.4x=1.52$$x=\frac{1.52}{0.4}$$x=3.8$Verification:LHS $=0.18(5x-4)$$=0.18(5(3.8)-4)$$=0.18(19-4)$$=0.18(15)$$=2.7$RHS $=0.5x+0.8$$=0.5(3.8)+0.8$$=1.9+0.8$$=2.7$LHS $=$ RHSHence verified.Read More 
Updated on 13-Apr-2023 23:09:37
Given:The given equations are:(i) $\frac{3x+1}{16}+\frac{2x-3}{7}=\frac{x+3}{8}+\frac{3x-1}{14}$(ii) $\frac{1-2x}{7}-\frac{2-3x}{8}=\frac{3}{2}+\frac{x}{4}$To do:We have to solve the given equations and check the results.Solution:To check the results we have to find the values of the variables and substitute them in the equation. Find the value of LHS and the value of RHS and check whether both are equal.(i) The given equation is $\frac{3x+1}{16}+\frac{2x-3}{7}=\frac{x+3}{8}+\frac{3x-1}{14}$$\frac{3x+1}{16}+\frac{2x-3}{7}=\frac{x+3}{8}+\frac{3x-1}{14}$On rearranging, we get, $\frac{3x+1}{16}+\frac{2x-3}{7}-\frac{x+3}{8}-\frac{3x-1}{14}=0$LCM of denominators $16, 7, 8$ and $14$ is $112$$\frac{(3x+1)\times7+(2x-3)\times16-(x+3) \times14-(3x-1)\times8}{112}=0$$\frac{7(3x)+7(1)+16(2x)-16(3)-14(x)-14(3)-8(3x)+8(1)}{112}=0$$\frac{21x+7+32x-48-14x-42-24x+8}{112}=0$$\frac{53x-38x+15-90}{112}=0$$\frac{15x-75}{112}=0$On cross multiplication, we get, $15x-75=112(0)$$15x-75=0$$15x=75$$x=\frac{75}{15}$$x=5$Verification:LHS $=\frac{3x+1}{16}+\frac{2x-3}{7}$$=\frac{3(5)+1}{16}+\frac{2(5)-3}{7}$$=\frac{15+1}{16}+\frac{10-3}{7}$$=\frac{16}{16}+\frac{7}{7}$$=1+1$$=2$RHS $=\frac{x+3}{8}+\frac{3x-1}{14}$$=\frac{5+3}{8}+\frac{3(5)-1}{14}$$=\frac{8}{8}+\frac{15-1}{14}$$=1+\frac{14}{14}$$=1+1$$=2$LHS $=$ RHSHence verified.(ii) The given equation is $\frac{1-2x}{7}-\frac{2-3x}{8}=\frac{3}{2}+\frac{x}{4}$$\frac{1-2x}{7}-\frac{2-3x}{8}=\frac{3}{2}+\frac{x}{4}$On rearranging, we get, $\frac{1-2x}{7}-\frac{2-3x}{8}-\frac{x}{4}=\frac{3}{2}$LCM of $7, 8$ and $4$ is $56$$\frac{8\times (1-2x)-(2-3x)\times7-(x)\times14}{56}=\frac{3}{2}$$\frac{8-16x-14+21x-14x}{56}=\frac{3}{2}$$\frac{-9x-6}{56}=\frac{3}{2}$On cross multiplication, we get, $(-9x-6)\times2=3\times56$$-18x-12=168$$-18x=168+12$$-18x=180$$x=\frac{180}{-18}$$x=-10$Verification:LHS $=\frac{1-2x}{7}-\frac{2-3x}{8}$$=\frac{1-2(-10)}{7}-\frac{2-3(-10)}{8}$$=\frac{1+20}{7}-\frac{2+30}{8}$$=\frac{21}{7}-\frac{32}{8}$$=3-4$$=-1$RHS ... Read More 
Updated on 13-Apr-2023 23:08:58
Given:The given equations are:(i) $\frac{3x}{4}-\frac{x-1}{2}=\frac{x-2}{3}$(ii) $\frac{5x}{3}-\frac{(x-1)}{4}=\frac{(x-3)}{5}$To do:We have to solve the given equations and check the results.Solution:To check the results we have to find the values of the variables and substitute them in the equation. Find the value of LHS and the value of RHS and check whether both are equal.(i) The given equation is $\frac{3x}{4}-\frac{x-1}{2}=\frac{x-2}{3}$$\frac{3x}{4}-\frac{x-1}{2}=\frac{x-2}{3}$On rearranging, we get, $\frac{3x}{4}-\frac{x-1}{2}-\frac{x-2}{3}=0$LCM of denominators $4, 2$ and $3$ is $12$$\frac{(3x)\times3-(x-1)\times6-(x-2) \times4}{4}=0$$\frac{9x-6(x)+6(1)-4(x)+4(2)}{12}=0$$\frac{9x-6x+6-4x+8}{12}=0$$\frac{-x+14}{12}=0$On cross multiplication, we get, $-x+14=0(12)$$-x+14=0$$x=14$Verification:LHS $=\frac{3x}{4}-\frac{x-1}{2}$$=\frac{3(14)}{4}-\frac{14-1}{2}$$=\frac{42}{4}-\frac{13}{2}$$=\frac{21}{2}-\frac{13}{2}$$=\frac{21-13}{2}$$=\frac{8}{2}$$=4$RHS $=\frac{x-2}{3}$$=\frac{14-2}{3}$$=\frac{12}{3}$$=4$LHS $=$ RHSHence verified.(ii) The given equation is $\frac{5x}{3}-\frac{(x-1)}{4}=\frac{(x-3)}{5}$.$\frac{5x}{3}-\frac{(x-1)}{4}=\frac{(x-3)}{5}$On rearranging, we get, $\frac{5x}{3}-\frac{(x-1)}{4}-\frac{(x-3)}{5}=0$LCM of $3, 4$ and $5$ is $60$$\frac{5x \times 20-(x-1)\times15-(x-3)\times12}{60}=0$$\frac{100x-15x+15-12x+36}{60}=0$$\frac{73x+51}{60}=0$On cross multiplication, we get, $73x+51=60(0)$$73x+51=0$$73x=-51$$x=\frac{-51}{73}$Verification:LHS $=\frac{5x}{3}-\frac{(x-1)}{4}$$=\frac{5(\frac{-51}{73})}{3}-\frac{(\frac{-51}{73}-1)}{4}$$=\frac{\frac{5\times(-51)}{73}}{3}-\frac{\frac{-51-1\times73}{73}}{4}$$=\frac{-255}{219}-\frac{-51-73}{73\times4}$$=\frac{-255}{219}-\frac{-124}{292}$$=\frac{-255\times4+124\times3}{876}$ ... Read More 
Updated on 13-Apr-2023 23:08:12
Given:The given equations are:(i) $\frac{(3a-2)}{3}+\frac{(2a+3)}{2}=a+\frac{7}{6}$(ii) $x-\frac{(x-1)}{2}=1-\frac{(x-2)}{3}$To do:We have to solve the given equations and check the results.Solution:To check the results we have to find the values of the variables and substitute them in the equation. Find the value of LHS and the value of RHS and check whether both are equal.(i) The given equation is $\frac{(3a-2)}{3}+\frac{(2a+3)}{2}=a+\frac{7}{6}$$\frac{(3a-2)}{3}+\frac{(2a+3)}{2}=a+\frac{7}{6}$On rearranging, we get, $\frac{(3a-2)}{3}+\frac{(2a+3)}{2}-a=\frac{7}{6}$LCM of denominators $3$ and $2$ is $6$$\frac{(3a-2)\times2+(2a+3)\times3-a \times6}{6}=\frac{7}{6}$$\frac{2(3a)-2(2)+(2a(3)+3(3)-6a}{6}=\frac{7}{6}$$\frac{6a-4+6a+9-6a}{6}=\frac{7}{6}$$\frac{6a-4+9}{6}=\frac{7}{6}$$\frac{6a+5}{6}=\frac{7}{6}$On cross multiplication, we get, $6a+5=\frac{7\times6}{6}$$6a+5=7$$6a+5=7$$6a=7-5$$6a=2$$a=\frac{2}{6}$$a=\frac{1}{3}$Verification:LHS $=\frac{(3a-2)}{3}+\frac{(2a+3)}{2}$$=\frac{(3(\frac{1}{3})-2)}{3}+\frac{(2(\frac{1}{3})+3)}{2}$$=\frac{1-2}{3}+\frac{\frac{2}{3}+3}{2}$$=\frac{-1}{3}+\frac{\frac{2+3\times3}{3}}{2}$$=\frac{-1}{3}+\frac{\frac{2+9}{3}}{2}$$=\frac{-1}{3}+\frac{11}{3\times2}$$=\frac{-1}{3}+\frac{11}{6}$$=\frac{-1\times2+11}{6}$ (LCM of $3$ and $6$ is $6$)$=\frac{-2+11}{6}$$=\frac{9}{6}$$=\frac{3}{2}$RHS $=a+\frac{7}{6}$$=\frac{1}{3}+\frac{7}{6}$$=\frac{1\times2+7}{6}$ (LCM of $3$ and $6$ is $6$)$=\frac{2+7}{6}$$=\frac{9}{6}$$=\frac{3}{2}$LHS $=$ ... Read More 
Updated on 13-Apr-2023 23:07:25
Given:The given equations are:(i) $\frac{7x}{2}-\frac{5x}{2}=\frac{20x}{3}+10$(ii) $\frac{6x+1}{2}+1=\frac{7x-3}{3}$To do:We have to solve the given equations and check the results.Solution:To check the results we have to find the values of the variables and substitute them in the equation. Find the value of LHS and the value of RHS and check whether both are equal.(i) The given equation is $\frac{7x}{2}-\frac{5x}{2}=\frac{20x}{3}+10$.$\frac{7x}{2}-\frac{5x}{2}=\frac{20x}{3}+10$On rearranging, we get, $\frac{7x}{2}-\frac{5x}{2}-\frac{20x}{3}=10$LCM of $2$ and $3$ is $6$$\frac{7x \times3-5x \times 3-20x \times2}{6}=10$$\frac{21x-15x-40x}{6}=10$$\frac{21x-55x}{6}=10$$\frac{-34x}{6}=10$$\frac{-17x}{3}=10$On cross multiplication, we get, $-17x=3(10)$$-17x=30$$x=\frac{30}{-17}$$x=\frac{-30}{17}$Verification:LHS $=\frac{7x}{2}-\frac{5x}{2}$$=\frac{7(\frac{-30}{17})}{2}-\frac{5(\frac{-30}{17})}{2}$$=\frac{-210}{34}-\frac{-150}{34}$$=\frac{-210+150}{34}$$=\frac{-60}{34}$$=\frac{-30}{17}$RHS $=\frac{20x}{3}+10$$=\frac{20(\frac{-30}{17})}{3}+10$$=\frac{20\times(-30)}{17\times3}+10$$=\frac{-600}{51}+10$$=\frac{-600+51\times10}{51}$ (LCM of $51$ and $1$ is $51$)$=\frac{-600+510}{51}$$=\frac{-90}{51}$$=\frac{-30}{17}$LHS $=$ RHSHence verified.(ii) The given equation is $\frac{6x+1}{2}+1=\frac{7x-3}{3}$$\frac{6x+1}{2}+1=\frac{7x-3}{3}$On ... Read More 
Updated on 13-Apr-2023 23:06:27
Given:The given equations are:(i) $\frac{1}{2}x+7x-6=7x+\frac{1}{4}$(ii) $\frac{3}{4}x+4x=\frac{7}{8}+6x-6$To do:We have to solve the given equations and check the results.Solution:To check the results we have to find the values of the variables and substitute them in the equation. Find the value of LHS and the value of RHS and check whether both are equal.(i) The given equation is $\frac{1}{2}x+7x-6=7x+\frac{1}{4}$.$\frac{1}{2}x+7x-6=7x+\frac{1}{4}$On rearranging, we get, $\frac{1}{2}x+7x-7x=\frac{1}{4}+6$$\frac{1}{2}x=\frac{1+6\times4}{4}$ (LCM of $4$ and $1$ is $4$)$\frac{1}{2}x=\frac{1+24}{4}$$\frac{1}{2}x=\frac{25}{4}$On cross multiplication, we get, $x=\frac{25\times2}{4}$$x=\frac{25}{2}$Verification:LHS $=\frac{1}{2}x+7x-6$$=\frac{1}{2}(\frac{25}{2})+7(\frac{25}{2})-6$$=\frac{25}{2\times2}+\frac{25\times7}{2}-6$$=\frac{25}{4}+\frac{175}{2}-6$$=\frac{25+175\times2-6\times4}{4}$ (LCM of $2$ and $4$ is $4$)$=\frac{25+350-24}{4}$$=\frac{351}{4}$RHS $=7x+\frac{1}{4}$$=7(\frac{25}{2})+\frac{1}{4}$$=\frac{25\times7}{2}+\frac{1}{4}$$=\frac{175}{2}+\frac{1}{4}$ $=\frac{175\times2+1}{4}$ ... Read More 
Updated on 13-Apr-2023 23:05:12
Given:The given equations are:(i) $\frac{7y+2}{5}=\frac{6y-5}{11}$(ii) $x-2x+2-\frac{16}{3}x+5=3-\frac{7}{2}x$To do:We have to solve the given equations and check the results.Solution:To check the results we have to find the values of the variables and substitute them in the equation. Find the value of LHS and the value of RHS and check whether both are equal.(i) The given equation is $\frac{7y+2}{5}=\frac{6y-5}{11}$.$\frac{7y+2}{5}=\frac{6y-5}{11}$On cross multiplication, we get, $(7y+2)\times11=5(6y-5)$$11(7y)+11(2)=5(6y)-5(5)$$77y+22=30y-25$$77y-30y=-25-22$$47y=-47$$y=\frac{-47}{47}$$y=-1$Verification:LHS $=\frac{7y+2}{5}$$=\frac{7(-1)+2}{5}$$=\frac{-7+2}{5}$$=\frac{-5}{5}$$=-1$RHS $=\frac{6y-5}{11}$$=\frac{6(-1)-5}{11}$$=\frac{-6-5}{11}$$=\frac{-11}{11}$$=-1$LHS $=$ RHSHence verified.(ii) The given equation is $x-2x+2-\frac{16}{3}x+5=3-\frac{7}{2}x$$x-2x+2-\frac{16}{3}x+5=3-\frac{7}{2x}$On rearranging, we get, $x-2x-\frac{16}{3}x+\frac{7}{2}x=3-2-5$$-x-\frac{16}{3}x+\frac{7}{2}x=3-7$$x(-1-\frac{16}{3}+\frac{7}{2})=-4$LCM of denominators $3$ and $2$ is $6$$x(\frac{-1\times6-16\times2+7\times3}{6})=-4$$x(\frac{-6-32+21}{6})=-4$$x(\frac{-38+21}{6})=-4$$x(\frac{-17}{6})=-4$On cross multiplication, we get, $-17x=(-4)\times6$$-17x=-24$$x=\frac{-24}{-17}$$x=\frac{24}{17}$Verification:LHS $=x-2x+2-\frac{16}{3}x+5$$=\frac{24}{17}-2(\frac{24}{17})+2-\frac{16}{3}(\frac{24}{17})+5$$=\frac{24}{17}-\frac{48}{17}+2-\frac{16\times24}{3\times17}+5$$=\frac{24-48}{17}+7-\frac{16\times8}{17}$$=\frac{-24}{17}-\frac{128}{17}+7$$=\frac{-24-128+7\times17}{17}$$=\frac{-152+119}{17}$$=\frac{-33}{17}$RHS $=3-\frac{7}{2}x$$=3-\frac{7}{2}(\frac{24}{17})$$=3-\frac{7\times24}{2\times17}$$=3-\frac{7\times12}{17}$$=\frac{3\times17-84}{17}$$=\frac{51-84}{17}$$=\frac{-33}{17}$LHS $=$ RHSHence verified.Read More 
Updated on 13-Apr-2023 23:03:34
Given:The given equations are:(i) $\frac{2x+5}{3}=3x-10$(ii) $\frac{a-8}{3}=\frac{a-3}{2}$To do:We have to solve the given equations and check the results.Solution:To check the results we have to find the values of the variables and substitute them in the equation. Find the value of LHS and the value of RHS and check whether both are equal.(i) The given equation is $\frac{2x+5}{3}=3x-10$.$\frac{2x+5}{3}=3x-10$On cross multiplication, we get, $2x+5=3(3x-10)$$2x+5=3(3x)-3(10)$$2x+5=9x-30$$9x-2x=5+30$$7x=35$$x=\frac{35}{7}$$x=5$Verification:LHS $=\frac{2x+5}{3}$$=\frac{2\times5+5}{3}$$=\frac{10+5}{3}$$=\frac{15}{3}$$=5$RHS $=3x-10$$=3(5)-10$$=15-10$$=5$LHS $=$ RHSHence verified.(ii) The given equation is $\frac{a-8}{3}=\frac{a-3}{2}$$\frac{a-8}{3}=\frac{a-3}{2}$On cross multiplication, we get, $(a-8)\times2=(a-3)\times3$$a(2)-8(2)=a(3)-3(3)$$2a-16=3a-9$$3a-2a=9-16$$a=-7$Verification:LHS $=\frac{a-8}{3}$$=\frac{-7-8}{3}$$=\frac{-15}{3}$$=-5$RHS $=\frac{a-3}{2}$$=\frac{-7-3}{2}$$=\frac{-10}{2}$$=-5$LHS $=$ RHSHence verified.Read More Advertisements