Found 8378 Articles for Class 10

Simplify \( \left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta) \)

Tutorialspoint
Updated on 10-Oct-2022 13:29:22
To do:We have to simplify \( \left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta) \).Solution:We know that,$\sin^2 \theta+\cos ^{2} \theta=1$.....(i)$\sec^2 \theta-\tan ^{2} \theta=1$.......(ii)$\sec \theta \times \cos \theta=1$.......(iii)Therefore,$\left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta)=\left(1+\tan ^{2} \theta\right)(1^2-\sin^2 \theta)$          [Since $(a-b)(a+b)=a^2-b^2$]$=\left(\sec ^{2} \theta\right)(\cos^2 \theta)$           [From (i) and (ii)]$=(\sec \theta\times cos \theta)^2$                  $=1^2$                          [From (iii)]$=1$ Therefore,\( \left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta)=1 \).

If \( \sqrt{3} \tan \theta=1 \), then find the value of \( \sin ^{2} \theta-\cos ^{2} \theta \).

Tutorialspoint
Updated on 10-Oct-2022 13:29:22
Given:\( \sqrt{3} \tan \theta=1 \)To do:We have to find the value of \( \sin ^{2}-\cos ^{2} \theta \).Solution:  $\sqrt{3} \tan \theta=1$       $\Rightarrow \tan \theta=\frac{1}{\sqrt3}$$\Rightarrow \tan \theta=\tan 30^{\circ}$$\Rightarrow \theta=30^{\circ}$Therefore,$\sin ^{2} \theta-\cos ^{2} \theta=\sin ^{2} 30^{\circ}-\cos ^{2} 30^{\circ}$$=(\frac{1}{2})^{2}-(\frac{\sqrt{3}}{2})^{2}$$=\frac{1}{4}-\frac{3}{4}$$=\frac{1-3}{4}$$=\frac{-2}{4}$$=\frac{-1}{2}$The value of \( \sin ^{2}-\cos ^{2} \theta \) is $\frac{-1}{2}$.

Prove the following:
\( 1+\frac{\cot ^{2} \alpha}{1+\operatorname{cosec} \alpha}=\operatorname{cosec} \alpha \)

Tutorialspoint
Updated on 10-Oct-2022 13:29:22
To do:We have to prove that \( 1+\frac{\cot ^{2} \alpha}{1+\operatorname{cosec} \alpha}=\operatorname{cosec} \alpha \).Solution:We know that, $\sin^2 A+\cos^2 A=1$$\operatorname{cosec}^2 A-\cot^2 A=1$$\sec^2 A-\tan^2 A=1$$\cot A=\frac{\cos A}{\sin A}$$\tan A=\frac{\sin A}{\cos A}$$\operatorname{cosec} A=\frac{1}{\sin A}$$\sec A=\frac{1}{\cos A}$Therefore, $1+\frac{\cot ^{2} \alpha}{1+\operatorname{cosec} \alpha}=1+\frac{\frac{\cos ^{2} \alpha}{\sin ^{2} \alpha}}{1+\frac{1}{\sin \alpha}}$$=1+\frac{\frac{\cos ^{2} \alpha}{\sin ^{2} \alpha}}{\frac{\sin \alpha+1}{\sin \alpha}}$$=1+\frac{\cos ^{2} \alpha}{\sin ^{2} \alpha} \times \frac{\sin \alpha}{\sin \alpha+1}$$=1+\frac{\cos ^{2} \alpha}{\sin \alpha(\sin \alpha+1)}$$=\frac{\sin \alpha(\sin \alpha+1)+\cos ^{2} \alpha}{\sin \alpha(\sin \alpha+1)}$$=\frac{\sin^2 \alpha+\sin \alpha+\cos ^{2} \alpha}{\sin \alpha(\sin \alpha+1)}$$=\frac{1+\sin \alpha}{\sin \alpha(\sin \alpha+1)}$$=\frac{1}{\sin \alpha}$$=\operatorname{cosec} \alpha$Hence proved.      Read More

Prove the following:
\( (\sqrt{3}+1)\left(3-\cot 30^{\circ}\right)=\tan ^{3} 60^{\circ}-2 \sin 60^{\circ} \)

Tutorialspoint
Updated on 10-Oct-2022 13:29:22
To do:We have to prove that \( (\sqrt{3}+1)(3-\cot 30^{\circ})=\tan^{3} 60^{\circ}-2\sin 60^{\circ} \).Solution:  We know that,$\cot 30^{\circ}=\sqrt3$$\tan 60^{\circ}=\sqrt3$$\sin 60^{\circ}=\frac{\sqrt3}{2}$Let us consider LHS,$(\sqrt{3}+1)(3-\cot 30^{\circ})=(\sqrt{3}+1)(3-\sqrt3)$$=(\sqrt{3})(3)-(\sqrt3)^2+1(3)-1(\sqrt3)$$=3\sqrt3-3+3-\sqrt3$$=2\sqrt3$     Let us consider RHS,$\tan^{3} 60^{\circ}-2\sin 60^{\circ}=(\sqrt3)^3-2(\frac{\sqrt3}{2})$$=3\sqrt3-\sqrt3$$=2\sqrt3$LHS $=$ RHSHence proved. 

Prove the following:
\( (\sin \alpha+\cos \alpha)(\tan \alpha+\cot \alpha)=\sec \alpha+\operatorname{cosec} \alpha \)

Tutorialspoint
Updated on 10-Oct-2022 13:29:22
Given:\( (\sin \alpha+\cos \alpha)(\tan \alpha+\cot \alpha)=\sec \alpha+\operatorname{cosec} \alpha \) To do:We have to prove that \( (\sin \alpha+\cos \alpha)(\tan \alpha+\cot \alpha)=\sec \alpha+\operatorname{cosec} \alpha \).Solution:We know that, $\tan \theta =\frac{\sin \theta}{\cos \theta}$$\cot \theta=\frac{\cos \theta}{\sin \theta}$$\sin ^{2} \theta+\cos ^{2} \theta=1$$\sec \theta =\frac{1}{\cos \theta}$$\operatorname{cosec} \theta=\frac{1}{\sin \theta}$Therefore, LHS $=(\sin \alpha+\cos \alpha)(\tan \alpha+\cot \alpha)$$=(\sin \alpha+\cos \alpha)(\frac{\sin \alpha}{\cos \alpha}+\frac{\cos \alpha}{\sin \alpha})$$=(\sin \alpha+\cos \alpha)(\frac{\sin^2 \alpha+\cos^2 \alpha}{\sin \alpha \cos \alpha})$$=(\sin \alpha+\cos \alpha) \frac{1}{(\sin \alpha \cos \alpha)}$$=\frac{1}{\cos \alpha}+\frac{1}{\sin \alpha}$$=\sec \alpha+\operatorname{cosec} \alpha$$=$ RHSHence proved.Read More

Prove the following:
If \( \tan \mathrm{A}=\frac{3}{4} \), then \( \sin \mathrm{A} \cos \mathrm{A}=\frac{12}{25} \)

Tutorialspoint
Updated on 10-Oct-2022 13:29:22
Given:\( \tan \mathrm{A}=\frac{3}{4} \)To do:We have to prove that \( \sin \mathrm{A} \cos \mathrm{A}=\frac{12}{25} \).Solution:Let, in a triangle $ABC$ right-angled at $B$, $\tan\ A=\frac{3}{4}$.We know that, In a right-angled triangle $ABC$ with right angle at $B$, By Pythagoras theorem, $AC^2=AB^2+BC^2$By trigonometric ratios definitions, $sin\ \theta=\frac{Opposite}{Hypotenuse}=\frac{BC}{AC}$$cos\ \theta=\frac{Adjacent}{Hypotenuse}=\frac{AB}{AC}$$sec\ \theta=\frac{Hypotenuse}{Adjacent}=\frac{AC}{AB}$$tan\ \theta=\frac{Opposite}{Adjacent}=\frac{BC}{AB}$Here, $AC^2=AB^2+BC^2$$\Rightarrow (AC)^2=(4)^2+(3)^2$$\Rightarrow AC^2=16+9$$\Rightarrow AC=\sqrt{25}=5$Therefore, $\sin\ A=\frac{BC}{AC}$$=\frac{3}{5}$$\cos\ A=\frac{AB}{AC}$$=\frac{4}{5}$Therefore, $\sin \mathrm{A} \cos \mathrm{A}=\frac{3}{5} \times \frac{4}{5}$$=\frac{3\times4}{5\times5}$$=\frac{12}{25}$Hence proved. Read More

Prove the following:
\( \frac{\tan \mathrm{A}}{1+\sec \mathrm{A}}-\frac{\tan \mathrm{A}}{1-\sec \mathrm{A}}=2 \operatorname{cosec} \mathrm{A} \)

Tutorialspoint
Updated on 10-Oct-2022 13:29:22
To do:We have to prove that \( \frac{\tan A}{1+\sec A}-\frac{\tan A}{1-\sec A}=2 \operatorname{cosec} A \).Solution:We know that, $\sin^2 A+\cos^2 A=1$$\operatorname{cosec}^2 A-\cot^2 A=1$$\sec^2 A-\tan^2 A=1$$\cot A=\frac{\cos A}{\sin A}$$\tan A=\frac{\sin A}{\cos A}$$\operatorname{cosec} A=\frac{1}{\sin A}$$\sec A=\frac{1}{\cos A}$Therefore, $\frac{\tan \mathrm{A}}{1+\sec \mathrm{A}}-\frac{\tan \mathrm{A}}{1-\sec \mathrm{A}}=\frac{\tan \mathrm{A}(1-\sec \mathrm{A}-1-\sec \mathrm{A})}{(1+\sec \mathrm{A})(1-\sec \mathrm{A})}$$=\frac{\tan \mathrm{A}(-2 \sec \mathrm{A})}{\left(1-\sec ^{2} \mathrm{~A}\right)}$$=\frac{2 \tan \mathrm{A}\sec \mathrm{A}}{\left(\sec ^{2} \mathrm{~A}-1\right)}$$=\frac{2 \tan \mathrm{A} \cdot \sec \mathrm{A}}{\tan ^{2} \mathrm{~A}}$$=\frac{2 \sec \mathrm{A}}{\tan \mathrm{A}}$$=2\times\frac{1}{\cos A}\times\frac{\cos A}{\sin A}$$=\frac{2}{\sin \mathrm{A}}$$=2 \operatorname{cosec} \mathrm{A}$Hence proved.    Read More

Prove the following:
\( \frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=2 \operatorname{cosec} \theta \)

Tutorialspoint
Updated on 10-Oct-2022 13:29:22
Given:\( \frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=2 \operatorname{cosec} \theta \)To do:We have to prove that \( \frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=2 \operatorname{cosec} \theta \)Solution:We know that, $(a+b)^2=a^2+2ab+b^2$$\sin ^{2} \theta+\cos ^{2} \theta=1$Therefore, LHS $=\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}$$=\frac{\sin ^{2} \theta+(1+\cos \theta)^{2}}{\sin \theta(1+\cos \theta)}$$=\frac{\sin ^{2} \theta+1+\cos ^{2} \theta+2 \cos \theta}{\sin \theta(1+\cos \theta)}$$=\frac{1+1+2 \cos \theta}{\sin \theta(1+\cos \theta)}$$=\frac{2(1+\cos \theta)}{\sin \theta(1+\cos \theta)}$$=\frac{2}{\sin \theta}$$=2 \operatorname{cosec} \theta$$=$ RHSHence proved.Read More

Explain the given reactions with the examples
(a) Hydrogenation reaction
(b) Oxidation reaction
(c) Substitution reaction
(d) Saponification reaction
(e) Combustion reaction

Tutorialspoint
Updated on 10-Oct-2022 13:29:14
(a) Hydrogenation reaction can be defined as an addition reaction between the hydrogen and other compounds in the presence of a catalyst.$CH_2 = CH_2 → CH_3CH_3$(b) An oxidation reaction is a reaction in which oxygen combines with an element or a compound. In other words, it can also be defined as a molecule loses its electrons.$2Mg + O_2→ 2MgO$(c) Substitution reaction can be defined as the reaction in which a more reactive element displaces a less reactive element from its aqueous salt solution.$Zn + CuSO_4 → ZnSO_4 + Cu$(d) Saponification reaction is the reaction in which the hydrolysis of an ... Read More

Look at Figure 4.1 and answer the following questions

(a) What change would you observe in the calcium hydroxide solution taken in tube B?
(b) Write the reaction involved in test tubes A and B respectively.
(c) If ethanol is given instead of ethanoic acid

Tutorialspoint
Updated on 10-Oct-2022 13:29:14
(a) The changes observed in B is that Calcium Hydroxide solution would become milky.(b) Reaction in Tube A: $CH_3COOH+NaHCO_3 → CH_3COONa + CO_2 + H_2O$Reaction in tube B$Ca(OH)_2 + CO_2 → CaCO_3 + H_2O$(c) If ethanol is replaced with ethanoic acid,  the same change will not be observed as Ethanol will not react with Sodium Hydrogen carbonate.(d) A solution of lime water can be prepared in the laboratory by taking distilled water in a beaker and mixing Calcium carbonate powder to it, thoroughly. Allow the solution to settle and decant the clear solution to obtain the lime water.Read More
Advertisements