Remove Relative Shift in Matplotlib Axis

Rishikesh Kumar Rishi
Updated on 12-May-2021 11:38:34

2K+ Views

To remove relative shift in matplotlib axis, we can take the following steps −Plot a line with two input lists.Using gca() method, get the current axis and then return the X-axis instance. Get the formatter of the major ticker. To remove the relative shift, use set_useOffset(False) method.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True plt.plot([10, 101, 1001], [1, 2, 3]) plt.gca().get_xaxis().get_major_formatter().set_useOffset(False) plt.show()Output

Define the Size of a Grid on a Plot Using Matplotlib

Rishikesh Kumar Rishi
Updated on 12-May-2021 11:36:34

6K+ Views

To define the size of a grid on a plot, we can take the following steps −Create a new figure or activate an existing figure using figure() method.Add an axes to the figure as a part of a subplot arrangement.Plot a curve with an input list.Make x and y margins 0.To set X-grids, we can pass input ticks points.To lay out the grid lines in current line style, use grid(True) method.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True fig = plt.figure() ax = fig.add_subplot(111) ax.plot([0, 2, 5, 8, 10, 1, 3, 14], ... Read More

Getting Information for Bins in Matplotlib Histogram Function

Rishikesh Kumar Rishi
Updated on 11-May-2021 13:52:52

832 Views

To get information for bins in matplotlib histogram function, we can take the following steps −Create a list of numbers for data and bins.Compute the histogram of a set of data using histogram() method.Get the hist and edges from the histogram (step 2).Find the frequency in a histogram.Make a bar with bins (Step 1) and freq (step 4) data.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True a = [-0.125, .15, 8.75, 72.5, -44.245, 88.45] bins = np.arange(-180, 181, 20) hist, edges = np.histogram(a, bins) freq = hist/float(hist.sum()) plt.bar(bins[:-1], freq, width=20, ... Read More

Adjust Space Between Legend Markers and Labels in Matplotlib

Rishikesh Kumar Rishi
Updated on 11-May-2021 13:50:36

4K+ Views

To adjust the space between legend markers and labels, we can use labelspacing in legend method.StepsPlot lines with label1, label2 and label3.Initialize a space variable to increase or decrease the space between legend markers and label.Use legend method with labelspacing in the arguments.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True plt.plot([0, 1], [0, 1.0], label='Label 1') plt.plot([0, 1], [0, 1.1], label='Label 2') plt.plot([0, 1], [0, 1.2], label='Label 3') space = 2 plt.legend(labelspacing=space) plt.show()Output

Redefine Color for Specific Value in Matplotlib Colormap

Rishikesh Kumar Rishi
Updated on 11-May-2021 13:48:14

3K+ Views

To redefine a color for a specific value in matplotlib colormap, we can take the following steps −Get a colormap instance, defaulting to rc values if *name* is None using get_cmap() method, with gray colormap.Set the color for low out-of-range values when "norm.clip = False" using set_under() method.Using imshow() method, display data an image, i.e., on a 2D regular raster.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt, cm plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True cmap = cm.get_cmap('gray') cmap.set_under('red') plt.imshow(np.arange(25).reshape(5, 5),    interpolation='none',    cmap=cmap,    vmin=.001) plt.show()OutputRead More

Animate a Rotating 3D Graph in Matplotlib

Rishikesh Kumar Rishi
Updated on 11-May-2021 13:41:04

2K+ Views

To make a rotating 3D graph in matplotlib, we can use Animation class for calling a function repeatedly.StepsInitialize variables for number of mesh grids, frequency per second to call a function, frame numbers.Create x, y, and z array for a curve.Make a function to make z array using lambda function.To pass a function into the animation class, make a user-defined function to remove the previous plot and plot a surface using x, y, and zarray.Create a new figure or activate an existing figure.Add a subplot arrangement using subplots() method.Set the Z-axis limit using set_zlim() method.Call the animation class to animate the surface plot.To display ... Read More

Plot Two Seaborn LMPlots Side by Side in Matplotlib

Rishikesh Kumar Rishi
Updated on 11-May-2021 13:35:10

11K+ Views

To plot two graphs side-by-side in Seaborn, we can take the following steps −To create two graphs, we can use nrows=1, ncols=2 with figure size (7, 7).Create a data frame with keys, col1 and col2, using Pandas.Use countplot() to show the counts of observations in each categorical bin using bars.Adjust the padding between and around the subplots.To display the figure, use show() method.Exampleimport pandas as pd import numpy as np import seaborn as sns from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True f, axes = plt.subplots(1, 2) df = pd.DataFrame(dict(col1=np.linspace(1, 10, 5), col2=np.linspace(1, 10, 5))) sns.countplot(df.col1, x='col1', ... Read More

Show Matplotlib Graphs as Fullscreen Image

Rishikesh Kumar Rishi
Updated on 11-May-2021 13:31:38

16K+ Views

To show matplotlib graphs as full screen, we can use full_screen_toggle() method.StepsCreate a figure or activate an existing figure using figure() method.Plot a line using two lists.Return the figure manager of the current figure.To toggle full screen image, use full_screen_toggle() method.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True plt.figure() plt.plot([1, 2], [1, 2]) manager = plt.get_current_fig_manager() manager.full_screen_toggle() plt.show()Output

Make a 4D Plot with Matplotlib Using Arbitrary Data

Rishikesh Kumar Rishi
Updated on 11-May-2021 13:28:35

7K+ Views

To make a 4D plot, we can create x, y, z and c standard data points. Create a new figure or activate an existing figure.StepsUse figure() method to create a figure or activate an existing figure.Add a figure as part of a subplot arrangement.Create x, y, z and c data points using numpy.Create a scatter plot using scatter method.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt import numpy as np plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x = np.random.standard_normal(100) y = np.random.standard_normal(100) z = np.random.standard_normal(100) c = np.random.standard_normal(100) img = ax.scatter(x, ... Read More

Plot a Simple Bar Chart in Python with Matplotlib

Rishikesh Kumar Rishi
Updated on 11-May-2021 13:25:59

900 Views

To plot a very simple bar chart from an input text file, we can take the following steps −Make an empty list for bar names and heights.Read a text file and iterate each line.Append names and heights into lists.Plot the bar using lists (Step 1).To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True bar_names = [] bar_heights = [] for line in open("test_data.txt", "r"):    bar_name, bar_height = line.split()    bar_names.append(bar_name)    bar_heights.append(bar_height) plt.bar(bar_names, bar_heights) plt.show()"test_data.txt" contains the following data −Javed 75 Raju 65 Kiran 55 Rishi 95OutputRead More

Advertisements