Setting Different Error Bar Colors in Barplot in Matplotlib

Rishikesh Kumar Rishi
Updated on 08-May-2021 09:44:43

1K+ Views

To set different error bar colors in barplot in matplotlib, we can take the following steps −Create a figure and add a set of subplots using subplots() method.Make a barplot with data range 4, heights 2. yerr means vertical errorbars to the bar tips. The values are sizes relative to the data. Dictionary of kwargs to be passed to the errorbar method. Values of ecolor or capsize defined here take precedence over the independent kwargs.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True fig, ax = plt.subplots() ax.bar(range(4), [2] * 4, yerr=range(1, 5),   ... Read More

Display Matplotlib Y-Axis Range Using Absolute Values

Rishikesh Kumar Rishi
Updated on 08-May-2021 09:44:24

1K+ Views

To display Y-axis range using absolute values rather than offset values, we can take the following steps −Create x_data and y_data data points in the range of 100 to 1000.Create a figure and a set of subplots using subplots() method.Plot x_data and y_data using plot() method.If a parameter is not set, the corresponding property of the formatter is left unchanged using ticklabel_format() method with useOffset=False.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True x_date = range(100, 1000, 100) y_data = range(100, 1000, 100) fig, ax = plt.subplots() ax.plot(x_date, y_data) ax.ticklabel_format(useOffset=False) plt.show()OutputRead More

Drawing Lines Between Two Plots in Matplotlib

Rishikesh Kumar Rishi
Updated on 08-May-2021 09:32:42

2K+ Views

To draw lines between two plots in matplotlib, we can take the following steps −Create a new figure or activate an existing figure.Add two axes (ax1 and ax2) to the figure as part of a subplot arrangement.Create random data x and y using numpy.Plot x and y data points on both the axes (ax1 and ax2) with color=red and marker=diamond.Initialize two variables, i and j to get the diffirent data points on the subplot.Make xy and mn tuple for positions to add a patch on the subplots.Add a patch that connects two points (possibly in different axes), con1 and con2.Add artists for con1 ... Read More

Display Left and Bottom Box Border in Matplotlib

Rishikesh Kumar Rishi
Updated on 08-May-2021 09:30:52

4K+ Views

To display or hide box border in matplotlib, we can use spines (value could be right, left, top or bottom) and set_visible() method to set the visibility to True or False.StepsCreate x and y data points using numpy.Create a figure and add a set of subplots using subplots() method.Plot x and y data points using plot() method, where linewidth=7 and color=red.Set visibility as True for left and bottom, and False for top and right.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(-2, 2, 10) y ... Read More

Adjust Offset of Colorbar Title in Matplotlib

Rishikesh Kumar Rishi
Updated on 08-May-2021 09:30:32

3K+ Views

To adjust (offset) the colorbar title in matplotlib, we can take the following steps −Create a random data of 4×4 dimension.Use imshow() method to display the data as an imgage.Create a colorbar for a scalar mappable instance using colorbar() method, with im mappable instance.Now, adjust (offset) the colorbar title in matplotlib, with labelpad=-1. You can assign different values to labelpad to see how it affects the colorbar title.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt, cm plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True data = np.random.rand(4, 4) im = plt.imshow(data, cmap=cm.jet) cb = plt.colorbar(im) cb.set_label('Image Colorbar', labelpad=-1) plt.show()OutputRead More

Increase Title Font Size in Matplotlib

Rishikesh Kumar Rishi
Updated on 08-May-2021 09:28:01

8K+ Views

To increase plt.title font size, we can initialize a variable fontsize and can use it in the title() method's argument.StepsCreate x and y data points using numpy.Use subtitle() method to place the title at the center.Plot the data points, x and y.Set the title with a specified fontsize.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(-1, 1, 10) y = x ** 2 fontsize = 12 plt.suptitle("Quadratic Equation", fontsize=fontsize) plt.plot(x, y) plt.title("y=x$^{2}$", fontdict={'fontsize': fontsize}) plt.show()OutputRead More

Configure Behavior of the Qt4Agg Backend in Matplotlib

Rishikesh Kumar Rishi
Updated on 08-May-2021 09:27:41

357 Views

To configure the behaviour of the backend, we can use matplotlib.rcParams['backend'] with a new backend name.StepsUse get_backend() method to get the backend name.Override the existing backend name using matplotlib.rcParams.Use get_backend() method to get the configured backend name.Exampleimport matplotlib backend = matplotlib.get_backend() print("The current backend name is: ", backend) matplotlib.rcParams['backend'] = 'TkAgg' backend = matplotlib.get_backend() print("Configured backend name is: ", backend)OutputThe current backend name is: GTK3Agg Configured backend name is: TkAgg

Change the Strength of Antialiasing in Matplotlib

Rishikesh Kumar Rishi
Updated on 08-May-2021 09:27:21

1K+ Views

We can change the strength of antialiasing by using True or False flag in the argument of plot() method.StepsCreate x data points and colors list with different colors.Defining a method that accepts antialiased flag and axis.We can iterate in the range of 5, to print 5 different colors of curves from x data points (Step 1).Create a new figure or activate an existing figure.Add an axis to the figure as part of a subplot arrangement, at index 1.Plot a line with antialiased flag set as False and ax1 (axis 1) and set the title of the figure.Add an axis to the figure ... Read More

Apply Function to Python Meshgrid

Rishikesh Kumar Rishi
Updated on 08-May-2021 09:25:51

621 Views

Meshgrid − Coordinate matrices from coordinate vectors.Let's take an example to see how we can apply a function to a Python meshgrid. We can consider two lists, x and y, using numpy vectorized decorator.Exampleimport numpy as np @np.vectorize def foo(a, b):    return a + b x = [0.0, 0.5, 1.0] y = [0.0, 1.0, 8.0] print("Function Output: ", foo(x, y))OutputFunction Output: [0. 1.5 9. ]

Necessity of plt.figure in Matplotlib

Rishikesh Kumar Rishi
Updated on 08-May-2021 09:25:30

351 Views

Using plt.figure(), we can create multiple figures and to close them all explicitly, call plt.close(). If you are creating many figures, make sure you explicitly call pyplot.close on the figures you are not using, because this will enable pyplot to properly clean up the memory.Using subplots(), we can create a figure and set of subplots.Here we creating two figures, fig1 and fig2. fig1 is 8×8 in size, whereas fig2 has the default figsize. There are 4×4=16 subplots added in fig2.Examplefrom matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True fig2, ax_lst = plt.subplots(4, 4) plt.show()OutputRead More

Advertisements