The numpy where() method can be used to filter Pandas DataFrame. Mention the conditions in the where() method. At first, let us import the required libraries with their respective aliasimport pandas as pd import numpy as npWe will now create a Pandas DataFrame with Product records dataFrame = pd.DataFrame({"Product": ["SmartTV", "ChromeCast", "Speaker", "Earphone"], "Opening_Stock": [300, 700, 1200, 1500], "Closing_Stock": [200, 500, 1000, 900]})Use numpy where() to filter DataFrame with 2 ConditionsresValues1 = np.where((dataFrame['Opening_Stock']>=700) & (dataFrame['Closing_Stock']< 1000)) print"Filtered DataFrame Value = ", dataFrame.loc[resValues1] Let us use numpy where() again to filter DataFrame with 3 conditionsresValues2 = np.where((dataFrame['Opening_Stock']>=500) & (dataFrame['Closing_Stock']< 1000) ... Read More
It's quite simple to rename a DataFrame column name in Pandas. All that you need to do is to use the rename() method and pass the column name that you want to change and the new column name. Let's take an example and see how it's done.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame, df.Use rename() method to rename the column name. Here, we will rename the column "x" with its new name "new_x".Print the DataFrame with the renamed column.Example import pandas as pd df = pd.DataFrame( { "x": [5, 2, ... Read More
To append rows to a DataFrame, use the append() method. Here, we will create two DataFrames and append one after the another.At first, import the pandas library with an alias −import pandas as pdNow, create the 1st DataFramedataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Jaguar'] } )Create the 2nd DataFramedataFrame2 = pd.DataFrame( { "Car": ['Mercedes', 'Tesla', 'Bentley', 'Mustang'] } )Next, append rows to the enddataFrame1 = dataFrame1.append(dataFrame2)ExampleFollowing is the codeimport pandas as pd # Create DataFrame1 dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Jaguar'] } ) print"DataFrame1 ...", dataFrame1 # Find ... Read More
To access a group of rows in a Pandas DataFrame, we can use the loc() method. For example, if we use df.loc[2:5], then it will select all the rows from 2 to 5.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame, df.Use df.loc[2:5] to select the rows from 2 to 5.Print the DataFrame.Example import pandas as pd df = pd.DataFrame( { "x": [5, 2, 7, 0, 7, 0, 5, 2], "y": [4, 7, 5, 1, 5, 1, 4, 7], "z": [9, 3, 5, 1, 5, 1, 9, 3] } ) print "Input DataFrame is:", df df = df.loc[2:5] print "New DataFrame:", dfOutput Input DataFrame is: x y z 0 5 4 9 1 2 7 3 2 7 5 5 3 0 1 1 4 7 5 5 5 0 1 1 6 5 4 9 7 2 7 3 New DataFrame: x y z 2 7 5 5 3 0 1 1 4 7 5 5 5 0 1 1
To create a subset of DataFrame by column name, use the square brackets. Use the DataFrame with square brackets (indexing operator) and the specific column name like this −dataFrame[‘column_name’]At first, import the required library with alias −import pandas as pdCreate a Pandas DataFrame with Product records −dataFrame = pd.DataFrame({"Product": ["SmartTV", "ChromeCast", "Speaker", "Earphone"], "Opening_Stock": [300, 700, 1200, 1500], "Closing_Stock": [200, 500, 1000, 900]})Let us fetch a subset i.e. we are fetching only Product column recordsdataFrame['Product']ExampleFollowing is the codeimport pandas as pd dataFrame = pd.DataFrame({"Product": ["SmartTV", "ChromeCast", "Speaker", "Earphone"], "Opening_Stock": [300, 700, 1200, 1500], "Closing_Stock": [200, 500, 1000, 900]}) ... Read More
To delete the first three rows of a DataFrame in Pandas, we can use the iloc() method.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame, df.Delete the first three rows using df.iloc[3:].Print the updated DataFrame.Example import pandas as pd df = pd.DataFrame( { "x": [5, 2, 7, 0, 7, 0, 5, 2], "y": [4, 7, 5, 1, 5, 1, 4, 7], "z": [9, 3, 5, 1, 5, 1, 9, 3] } ) print "Input DataFrame is:", df df = df.iloc[3:] print "After deleting the first 3 rows: ", dfOutput Input DataFrame is: x y z 0 5 4 9 1 2 7 3 2 7 5 5 3 0 1 1 4 7 5 5 5 0 1 1 6 5 4 9 7 2 7 3 After deleting the first 3 rows: x y z 3 0 1 1 4 7 5 5 5 0 1 1 6 5 4 9 7 2 7 3
To convert a Pandas DataFrame into a dictionary, we can use the to_dict() method. Let's take an example and see how it's done.StepsCreate two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame, df.Convert the DataFrame into a dictionary using to_dict() method and print it.Example import pandas as pd df = pd.DataFrame( { "x": [5, 2, 7, 0], "y": [4, 7, 5, 1], "z": [9, 3, 5, 1] } ) print "Input DataFrame is:", df print "Convert DataFrame into dictionary: ", df.to_dict()Output Input DataFrame is: x y z 0 5 4 9 1 2 7 3 2 7 5 5 3 0 1 1 Convert DataFrame into dictionary: {'x': {0: 5, 1: 2, 2: 7, 3: 0}, 'y': {0: 4, 1: 7, 2: 5, 3: 1}, 'z': {0: 9, 1: 3, 2: 5, 3: 1}}
To put a Pandas DataFrame into a JSON file and read it again, we can use to_json() and read_json() methods.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame, df.Use to_json() method to dump the DataFrame into a JSON file.Use read_json() method to read the JSON file.Exampleimport pandas as pd df = pd.DataFrame( { "x": [5, 2, 7, 0], "y": [4, 7, 5, 1], "z": [9, 3, 5, 1] } ) print "Input DataFrame is:", df print "JSON output for input DataFrame: ", df.to_json("test.json") ... Read More
We can slice a Pandas DataFrame to select rows between two index values. Let's take an example and see how it's done.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame, df.Initialize a variable for lower limit of the index.Initialize another variable for upper limit of the index.Use df[index_lower_limit: index_upper_limit] to print the DataFrame in range index.Exampleimport pandas as pd df = pd.DataFrame( { "x": [5, 2, 7, 0], "y": [4, 7, 5, 1], "z": [9, ... Read More
We can use different criteria to compare all the column values of a Pandas DataFrame. We can perform comparison operations like df[col]2, then it will check all the values from col and compare whether they are greater than 2. For all the column values, it will return True if the condition holds, else False. Let's take an example and see how it's done.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame, df.Initialize a variable col, with a column name.Perform some comparison operations.Print the resultant DataFrame.Example import pandas as pd df = pd.DataFrame( ... Read More
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP