# Are the following pair of linear equations consistent? Justify your answer.$2 a x+b y=a$$4 a x+2 b y-2 a=0 ; \quad a, b≠0$

#### Complete Python Prime Pack for 2023

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack 2023

8 Courses     2 eBooks

Given :

The given pair of equations is,

$2 a x+b y=a$

$4 a x+2 b y-2 a=0 ; a, b ≠ 0$

To find :

We have to find whether the given pair of linear equations are consistent.

Solution:

We know that,

The condition for consistent pair of linear equations is,

$\frac{a_1}{a_2}≠\frac{b_1}{b_2}$                [For unique solution]

$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$            [For infinitely many solutions]

$2 a x+b y-a=0$

$4 a x+2 b y-2 a=0; a, b ≠ 0$

Here,

$a_1=2a, b_1=b, c_1=-a$

$a_2=4a, b_2=2b, c_2=-2a$

Therefore,

$\frac{a_1}{a_2}=\frac{2a}{4a}=\frac{1}{2}$

$\frac{b_1}{b_2}=\frac{b}{2b}=\frac{1}{2}$

$\frac{c_1}{c_2}=\frac{-a}{-2a}=\frac{1}{2}$

Here,

$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$

Hence, the given pair of linear equations has infinitely many solutions and therefore consistent.

Updated on 10-Oct-2022 13:27:15