- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Do the following equations represent a pair of coincident lines? Justify your answer.
$ \frac{x}{2}+y+\frac{2}{5}=0 $
$ 4 x+8 y+\frac{5}{16}=0 $
Given :
The given pair of equations is,
\( \frac{x}{2}+y+\frac{2}{5}=0 \)
\( 4 x+8 y+\frac{5}{16}=0 \)
To find :
We have to find whether the given pair of equations represent a pair of coincident lines.
Solution:
We know that,
The condition for coincident lines is,
$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$
\( \frac{x}{2}+y+\frac{2}{5}=0 \)
$10(\frac{x}{2})+10(y)+10(\frac{2}{5})=0$
$5x+10y+4=0$
\( 4 x+8 y+\frac{5}{16}=0 \)
$16(4x)+16(8y)+16(\frac{5}{16})=0$
$64x+128y+5=0$
Here,
$a_1=5, b_1=10, c_1=4$
$a_2=64, b_2=128, c_2=5$
Therefore,
$\frac{a_1}{a_2}=\frac{5}{64}$
$\frac{b_1}{b_2}=\frac{10}{128}=\frac{5}{64}$
$\frac{c_1}{c_2}=\frac{4}{5}$
Here,
$\frac{a_1}{a_2}=\frac{b_1}{b_2}≠\frac{c_1}{c_2}$
Hence, the given pair of linear equations has no solution.
- Related Articles
- Do the following equations represent a pair of coincident lines? Justify your answer.\( -2 x-3 y=1 \)\( 6 y+4 x=-2 \)
- Do the following equations represent a pair of coincident lines? Justify your answer.\( 3 x+\frac{1}{7} y=3 \)\( 7 x+3 y=7 \)
- Do the following pair of linear equations have no solution? Justify your answer.\( 3 x+y-3=0 \)\( 2 x+\frac{2}{3} y=2 \)
- Are the following pair of linear equations consistent? Justify your answer.\( \frac{3}{5} x-y=\frac{1}{2} \)\( \frac{1}{5} x-3 y=\frac{1}{6} \)
- Solve the following pairs of equations:\( \frac{1}{2 x}-\frac{1}{y}=-1 \)\( \frac{1}{x}+\frac{1}{2 y}=8, x, y ≠ 0 \)
- Solve the following system of equations: $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 13$$\frac{5}{x}\ –\ \frac{4}{y}\ =\ -2$
- Solve the following pairs of equations:\( \frac{2 x y}{x+y}=\frac{3}{2} \)\( \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠ 0,2 x-y ≠ 0 \)
- Choose the correct answer from the given four options:For what value of \( k \), do the equations \( 3 x-y+8=0 \) and \( 6 x-k y=-16 \) represent coincident lines?(A) \( \frac{1}{2} \)(B) \( -\frac{1}{2} \)(C) 2(D) \( -2 \)
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- Add the following algebraic expressions(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- Find the solution of the pair of equations \( \frac{x}{10}+\frac{y}{5}-1=0 \) and \( \frac{x}{8}+\frac{y}{6}=15 \). Hence, find \( \lambda \), if \( y=\lambda x+5 \).
- Solve the following pairs of equations:\( \frac{x}{3}+\frac{y}{4}=4 \)\( \frac{5 x}{6}-\frac{y}{8}=4 \)
- Find the solution of the pair of equations $\frac{x}{10}+\frac{y}{5}-1=0$ and $\frac{x}{8}+\frac{y}{6}=15$. Hence, find $λ$, if $y = λx + 5$.
- Solve the following system of equations:$\frac{5}{x+y} -\frac{2}{x-y}=-1$$\frac{15}{x+y}+\frac{7}{x-y}=10$
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)

Advertisements