# Java.lang.StrictMath.IEEEremainder() Method Example

## Description

The java.lang.StrictMath.IEEEremainder() method computes the remainder operation on two arguments.

The remainder value is mathematically equal to f1 - f2 × n, where n is the mathematical integer closest to the exact mathematical value of the quotient f1/f2, and if two mathematical integers are equally close to f1/f2, then n is the integer that is even.

If the remainder is zero, its sign is the same as the sign of the first argument.It include some cases −

• If either argument is NaN, or the first argument is infinite, or the second argument is positive zero or negative zero, then the result is NaN.
• If the first argument is finite and the second argument is infinite, then the result is the same as the first argument.

## Declaration

Following is the declaration for java.lang.StrictMath.IEEEremainder() method

```public static double IEEEremainder(double f1, double f2)
```

## Parameters

• f1 − This is the dividend.

• f2 − This is the divisor.

## Return Value

This method returns the remainder when f1 is divided by f2.

NA

## Example

The following example shows the usage of java.lang.StrictMath.IEEEremainder() method.

```package com.tutorialspoint;

import java.lang.*;

public class StrictMathDemo {

public static void main(String[] args) {

double d1 = 102.20d , d2 = 32.29d;

// returns the remainder
double retval = StrictMath.IEEEremainder(d1, d2);
System.out.println(" remainder = " + retval);

/* if the first argument is finite and the second argument is infinite,
then the result is the same as the first argument */
d1 = 30.12d;
d2 = (1.0)/(0.0);
retval = StrictMath.IEEEremainder(d1, d2);
System.out.println(" remainder = " + retval);
}
}
```

Let us compile and run the above program, this will produce the following result −

```remainder = 5.330000000000005
remainder = 30.12
```
java_lang_strictmath.htm