- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Z-Transform and ROC of Finite Duration Sequences
The sequences having a finite number of samples are called the finite duration sequences. The finite duration sequences may be of following three types viz. −
- Right-Hand Sequences
- Left-Hand Sequences
- Two-Sided Sequences
Right-Hand Sequence
A sequence for which $\mathrm{\mathit{x\left ( n \right )}}$ = 0 for $\mathit{n}$ < $\mathit{n_{\mathrm{0}}}$ where $\mathit{n_{\mathrm{0}}}$ may be positive or negative but finite, is called the right hand sequence. If $\mathit{n_{\mathrm{0}}}$ ≥ 0, the resulting sequence is a causal sequence. The ROC of a causal sequence is the entire z-plane except at 𝑧 = 0.
Numerical Example (1)
Find the ROC and Z-Transform of the causal sequence.
$$\mathrm{\mathit{x\left ( n \right )}\mathrm{\, =\,} \begin{Bmatrix} 1, & 0,& -4,& 6,& 5,& 4 \ \uparrow & & & & & \ \end{Bmatrix} }$$
Solution
The given sequence is a right-hand sequence. The values of the given sequence are −
$$\mathrm{\mathit{x\left ( \mathrm{0} \right )\mathrm{\, =\,}\mathrm{1},x\left ( \mathrm{1} \right )\mathrm{\, =\,}\mathrm{0},x\left ( \mathrm{2} \right )\mathrm{\, =\,}\mathrm{-4},x\left ( \mathrm{3} \right )\mathrm{\, =\,}\mathrm{6},x\left ( \mathrm{4} \right )\mathrm{\, =\,}\mathrm{5},x\left ( \mathrm{5} \right )\mathrm{\, =\,}\mathrm{4}}}$$
The Z-transform of a sequence is given by,
$$\mathrm{\mathit{X\left ( z \right )\mathrm{\, =\,}\sum_{n\mathrm{\, =\,}-\infty }^{\infty }x\left ( n \right )z^{-n}}}$$
Thus, for the given values of the sequence, we get,
$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\,}X\left ( z \right )}}$$
$$\mathrm{\mathit{\mathrm{\, =\,}x\left ( \mathrm{0} \right )\mathrm{\, \mathrm{\, +\,}\,}x\left ( \mathrm{1} \right )z^{-\mathrm{1}}\mathrm{\, \mathrm{\, +\,}\,}x\left ( \mathrm{2} \right )z^{-\mathrm{2}}\mathrm{\, \mathrm{\, +\,}\,}x\left ( \mathrm{3} \right )z^{-\mathrm{3}}\mathrm{\, \mathrm{\, +\,}\,}x\left ( \mathrm{4} \right )z^{-\mathrm{4}}\mathrm{\, \mathrm{\, +\,}\,}x\left ( \mathrm{5} \right )z^{-\mathrm{5}}}}$$
$$\mathrm{\mathit{\therefore X\left ( z \right )\mathrm{\, =\,}\mathrm{1}-\mathrm{4}z^{\mathrm{-2}}\mathrm{\, \mathrm{\, +\,}\,}\mathrm{6}z^{\mathrm{-3}}\mathrm{\, \mathrm{\, +\,}\,}\mathrm{5}z^{\mathrm{-4}}\mathrm{\, \mathrm{\, +\,}\,}\mathrm{4}z^{\mathrm{-5}} }}$$
The given sequence is a causal sequence, thus $\mathrm{\mathit{X\left ( z \right )}}$ converges for all values of z except at 𝑧 = 0, i.e., the ROC is entire z-plane except at 𝑧 = 0.
Left-Hand Sequence
A sequence for which $\mathrm{\mathit{x\left ( n \right )}}$ = 0 for $\mathit{n}$ ≥ $\mathit{n_{\mathrm{0}}}$, where $\mathit{n_{\mathrm{0}}}$ is positive or negative but finite, is called the left-hand sequence. When $\mathit{n_{\mathrm{0}}}$ ≤ 0, then the resulting sequence is an anti-causal sequence. The ROC of an anti-causal sequence is the entire z-plane except at 𝑧 = ∞.
Numerical Example (2)
Find the Z-transform and ROC of the anti-causal sequence.
$$\mathrm{\mathit{x\left ( n \right )}\mathrm{\, =\,} \begin{Bmatrix} 1, & -2,& -1,& 2,& 3,& 4 \ & & & & & \uparrow\ \end{Bmatrix} }$$
Solution
The given sequence is a left-hand sequence. The values of the given sequence are −
$$\mathrm{\mathit{x\left (\mathrm{-5} \right )\mathrm{\, =\,}\mathrm{1},x\left (\mathrm{-4} \right )\mathrm{\, =\,}\mathrm{-2},x\left (\mathrm{-3} \right )\mathrm{\, =\,}\mathrm{-1},x\left (\mathrm{-2} \right )\mathrm{\, =\,}\mathrm{2},x\left (\mathrm{-1} \right )\mathrm{\, =\,}\mathrm{3},x\left (\mathrm{0} \right )\mathrm{\, =\,}\mathrm{4}}}$$
As the Z-transform is given by,
$$\mathrm{\mathit{X\left ( z \right )\mathrm{\, =\,}\sum_{n\mathrm{\, =\,}-\infty }^{\infty }x\left ( n \right )z^{-n}}}$$
Hence, for the given sequence values, the Z-transform is,
$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\,}X\left ( z \right )}}$$
$$\mathrm{\mathit{\mathrm{\, =\,}x\left ( \mathrm{-5} \right )z^{\mathrm{5}}\mathrm{\, \mathrm{\, +\,}\,}x\left ( \mathrm{-4} \right )z^{\mathrm{4}}\mathrm{\, \mathrm{\, +\,}\,}x\left ( \mathrm{-3} \right )z^{\mathrm{3}}\mathrm{\, \mathrm{\, +\,}\,}x\left ( \mathrm{-2} \right )z^{\mathrm{2}}\mathrm{\, \mathrm{\, +\,}\,}x\left ( \mathrm{-1} \right )z\mathrm{\, \mathrm{\, +\,}\,}x\left ( \mathrm{0} \right )}}$$
$$\mathrm{\mathit{\therefore X\left ( z \right )\mathrm{\, =\,}z^{\mathrm{5}}-\mathrm{2}z^{\mathrm{4}}-z^{\mathrm{3}}\mathrm{\, \mathrm{\, +\,}\,}\mathrm{2}z^{\mathrm{2}}\mathrm{\, \mathrm{\, +\,}\,}\mathrm{3}z\mathrm{\, \mathrm{\, +\,}\,}\mathrm{4} }}$$
As the given sequence is an anti-causal sequence, therefore the $\mathrm{\mathit{X\left ( z \right )}}$ converses for all values of z except at 𝑧 = ∞, i.e., the ROC is the entire z-plane except at 𝑧 = ∞.
Two-Sided Sequence
A two-sided sequence is the one which exists on both the left and right sides. The ROC of a two-sided sequence is the entire z-plane except at 𝑧 = 0 and 𝑧 = ∞.
Numerical Example (3)
Find the Z-transform and ROC of the two-sided sequence.
$$\mathrm{\mathit{x\left ( n \right )}\mathrm{\, =\,} \begin{Bmatrix} 5, & 1,& 2,& 3,& 4,& 0,& 5,& \ & & & \uparrow& & \ \end{Bmatrix} }$$
Solution
The values of the given two-sided sequence are −
$$\mathrm{\mathit{x\left (\mathrm{-3} \right )\mathrm{\, =\,}\mathrm{5},x\left (\mathrm{-2} \right )\mathrm{\, =\,}\mathrm{1},x\left (\mathrm{-1} \right )\mathrm{\, =\,}\mathrm{2},x\left (\mathrm{0} \right )\mathrm{\, =\,}\mathrm{3},x\left (\mathrm{1} \right )\mathrm{\, =\,}\mathrm{4},x\left (\mathrm{2} \right )\mathrm{\, =\,}\mathrm{0},x\left (\mathrm{3} \right )\mathrm{\, =\,}\mathrm{5}}}$$
The Z-transform is given by,
$$\mathrm{\mathit{X\left ( z \right )\mathrm{\, =\,}\sum_{n\mathrm{\, =\,}-\infty }^{\infty }x\left ( n \right )z^{-n}}}$$
For the sequence values, the Z-transform is,
$$\mathrm{\mathit{X\left ( z \right )\mathrm{\, =\,}x\left ( \mathrm{-3} \right )z^{\mathrm{3}}\mathrm{\, +\,}x\left ( \mathrm{-2} \right )z^{\mathrm{2}}\mathrm{\, +\,}x\left ( \mathrm{-1} \right )z\mathrm{\, +\,}x\left ( \mathrm{0} \right )\mathrm{\, +\,}x\left ( \mathrm{1} \right )z^{\mathrm{-1}}\mathrm{\, +\,}x\left ( \mathrm{2} \right )z^{\mathrm{-2}}\mathrm{\, +\,}x\left ( \mathrm{3} \right )z^{\mathrm{-3}}}}$$
$$\mathrm{\mathit{\therefore X\left ( z \right )\mathrm{\, =\,}\mathrm{5}z^{\mathrm{3}}\mathrm{\, +\,}z^{\mathrm{2}}\mathrm{\, +\,}\mathrm{2}z\mathrm{\, +\,}\mathrm{3}\mathrm{\, +\,}\mathrm{4}z^{\mathrm{-1}}\mathrm{\, +\,}\mathrm{5}z^{\mathrm{-3}}}}$$
The ROC is the entire z-plane except at 𝑧 = 0 and 𝑧 = ∞.
- Related Articles
- Signals and Systems – Properties of Region of Convergence (ROC) of the Z-Transform
- Laplace Transform and Region of Convergence of Two-Sided and Finite Duration Signals
- Difference between Z-Transform and Laplace Transform
- Properties of Z-Transform
- Conjugation and Accumulation Properties of Z-Transform
- Signals and Systems – Relation between Laplace Transform and Z-Transform
- Transform Analysis of LTI Systems using Z-Transform
- Differentiation in z-Domain Property of Z-Transform
- Z-Transform of Exponential Functions
- Convolution Property of Z-Transform
- Correlation Property of Z-Transform
- Multiplication Property of Z-Transform
- Signals and Systems – Relation between Discrete-Time Fourier Transform and Z-Transform
- Initial Value Theorem of Z-Transform
- Final Value Theorem of Z-Transform
