- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
What is ndim in pandas DataFrame?
The ndim is an attribute in the pandas DataFrame which is used to get the integer/number representation of dimensions of the given DataFrame object.
As we know, the pandas DataFrame is a two-dimensional data structure that is used to store the data in a tabular format. Regardless of the number of rows and columns lengths or type of data the dimensions of the DataFrame do not affect.
The output for the ndim property of pandas DataFrame is always 2.
Example 1
In this following example, we have applied the ndim attribute to the pandas DataFrame object “df”, this DataFrame is created with a single column “Col1”.
# importing pandas packages import pandas as pd L = list('ABCDEFGH') # creating pandas DataFrame df = pd.DataFrame(L, columns=['col1']) print('DataFrame:') print(df) # apply ndim property to get the dimensions print('Result:', df.ndim)
Output
The output is as follows −
DataFrame: col1 0 A 1 B 2 C 3 D 4 E 5 F 6 G 7 H Result: 2
In the above output block, the value 2 represents the dimensions of the given DataFrame.
Example 2
Let's use another pandas DataFrame object and apply the ndim attribute to get the dimensions.
# importing pandas package import pandas as pd # create a Pandas DataFrame df = pd.DataFrame({'Country':['Brazil','Canada','New Zealand','Iceland', 'India', 'Sri Lanka', 'United States'], 'Capital': [ 'Belmopan','Ottawa','Wellington','Reykjavik', 'New Delhi','Colombo', 'Washington D.C']}) print("DataFrame:") print(df) # apply ndim property to get the dimensions print('Result:', df.ndim)
Output
The output is as follows −
DataFrame: Country Capital 0 Brazil Belmopan 1 Canada Ottawa 2 New Zealand Wellington 3 Iceland Reykjavik 4 India New Delhi 5 Sri Lanka Colombo 6 United States Washington D.C Result: 2
For this example also the ndim attribute returned 2for the given DataFrame.