
- Python Basic Tutorial
- Python - Home
- Python - Overview
- Python - Environment Setup
- Python - Basic Syntax
- Python - Comments
- Python - Variables
- Python - Data Types
- Python - Operators
- Python - Decision Making
- Python - Loops
- Python - Numbers
- Python - Strings
- Python - Lists
- Python - Tuples
- Python - Dictionary
- Python - Date & Time
- Python - Functions
- Python - Modules
- Python - Files I/O
- Python - Exceptions
Python – Merge two Pandas DataFrame
To merge two Pandas DataFrame, use the merge() function. Just set both the DataFrames as a parameter of the merge() function.
At first, let us import the required library with alias “pd” −
import pandas as pd
Create the 1st DataFrame −
# Create DataFrame1 dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90] } )
Next, create the 2nd DataFrame −
# Create DataFrame2 dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } )
Now, merge both the DataFrames using the merge() function −
mergedRes = pd.merge(dataFrame1, dataFrame2)
Example
Following is the code −
import pandas as pd # Create DataFrame1 dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90] } ) print"DataFrame1 ...\n",dataFrame1 # Create DataFrame2 dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } ) print"\nDataFrame2 ...\n",dataFrame2 # merge DataFrames mergedRes = pd.merge(dataFrame1, dataFrame2) print"\nMerged data frame...\n", mergedRes
Output
This will produce the following output −
DataFrame1 ... Car Units 0 BMW 100 1 Lexus 150 2 Audi 110 3 Mustang 80 4 Bentley 110 5 Jaguar 90 DataFrame2 ... Car Reg_Price 0 BMW 7000 1 Lexus 1500 2 Audi 5000 3 Mustang 8000 4 Mercedes 9000 5 Jaguar 6000 Merged data frame... Car Units Reg_Price 0 BMW 100 7000 1 Lexus 150 1500 2 Audi 110 5000 3 Mustang 80 8000 4 Jaguar 90 6000
- Related Articles
- Python - Merge Pandas DataFrame with Outer Join
- Python - Merge Pandas DataFrame with Inner Join
- Python Pandas - Merge DataFrame with indicator value
- Python - Merge Pandas DataFrame with Right Outer Join
- Python - Merge Pandas DataFrame with Left Outer Join
- Python Pandas – Merge DataFrame with one-to-many relation
- Python Pandas – Merge DataFrame with many-to-one relation
- Python Pandas – Merge DataFrame with one-to-one relation
- Merge Pandas DataFrame with a common column
- Python Pandas – Filter DataFrame between two dates
- How to Merge all CSV Files into a single dataframe – Python Pandas?
- Merge Python Pandas dataframe with a common column and set NaN for unmatched values
- How to Merge multiple CSV Files into a single Pandas dataframe ?
- Select DataFrame rows between two index values in Python Pandas
- Python Pandas – Find the common rows between two DataFrames with merge()

Advertisements