Vertex Covering


A covering graph is a subgraph that contains either all the vertices or all the edges corresponding to some other graph. A subgraph that contains all the vertices is called a line/edge covering. A subgraph that contains all the edges is called a vertex covering.

Let 'G' = (V, E) be a graph. A subset K of V is called a vertex covering of 'G', if every edge of 'G' is incident with or covered by a vertex in 'K'.

Example

Take a look at the following graph −

The subgraphs that can be derived from the above graph are as follows −

K1 = {b, c}
K2 = {a, b, c}
K3 = {b, c, d}
K4 = {a, d}

Here, K1, K2, and K3 have vertex covering, whereas K4 does not have any vertex covering as it does not cover the edge {bc}.

Minimal Vertex Covering

A vertex 'K' of graph 'G' is said to be minimal vertex covering if no vertex can be deleted from 'K'.

Example

In the above graph, the subgraphs having vertex covering are as follows −

K1 = {b, c}

K2 = {a, b, c}

K3 = {b, c, d}

Here, K1 and K2 are minimal vertex coverings, whereas in K3, vertex 'd' can be deleted.

Minimum Vertex Covering

It is also known as the smallest minimal vertex covering. A minimal vertex covering of graph 'G' with a minimum number of vertices is called the minimum vertex covering.

The number of vertices in a minimum vertex covering of 'G' is called the vertex covering a number of G (α2).

Example

In the following graph, the subgraphs having vertex covering are as follows −

K1 = {b, c}

K2 = {a, b, c}

K3 = {b, c, d}

Here, K1 is a minimum vertex cover of G, as it has only two vertices. α2 = 2.

Updated on: 21-Jan-2020

189 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements