- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Time Convolution and Multiplication Properties of Laplace Transform
Laplace Transform
The Laplace transform is a mathematical tool which is used to convert the differential equation in time domain into the algebraic equations in the frequency domain or s-domain.
Mathematically, if $\mathrm{\mathit{x\left ( t \right )}}$ is a time domain function, then its Laplace transform is defined as −
$$\mathrm{\mathit{L\left [ x\left ( t \right ) \right ]\mathrm{\, =\,}X\left ( s \right )\mathrm{\, =\,}\int_{-\infty }^{\infty }x\left ( t \right )e^{-st}\:dt\; \; \cdot \cdot \cdot\left ( \mathrm{1} \right ) }}$$
Equation (1) gives the bilateral Laplace transform of the function $\mathrm{\mathit{x\left ( t \right )}}$. But for the causal signals, the unilateral Laplace transform is applied, which is defined as −
$$\mathrm{\mathit{L\left [ x\left ( t \right ) \right ]\mathrm{\, =\,}X\left ( s \right )\mathrm{\, =\,}\int_{\mathrm{0} }^{\infty }x\left ( t \right )e^{-st}\:dt\; \; \cdot \cdot \cdot\left ( \mathrm{2} \right ) }}$$
Also, the inverse Laplace transform is defined as −
$$\mathrm{\mathit{L^{\mathrm{-1}}\left [X\left ( s \right ) \right ]\mathrm{\, =\,}x\left ( t \right )\mathrm{\, =\,}\frac{\mathrm{1}}{\mathrm{2}\pi j}\int_{\sigma -j\infty }^{\sigma \mathrm{\mathrm{\, +\,} }j\infty }X\left ( s \right )e^{st}\:ds\; \; \cdot \cdot \cdot\left ( \mathrm{3} \right ) }}$$
Time Convolution Property of Laplace Transform
Statement – The time convolution property of the Laplace transform states that the Laplace transform of convolution of two signals in time domain is equivalent to the product of their respective Laplace transforms. Therefore, if
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )\overset{LT}{\leftrightarrow} X_{\mathrm{1}}\left ( s \right )\:\: \mathrm{and}\:\, x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow} X_{\mathrm{2}}\left ( s \right )}}$$
Then,
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )\ast x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow} X_{\mathrm{1}}\left ( s \right )X_{\mathrm{2}}\left ( s \right )}}$$
Proof
If $\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )}}$ and $\mathrm{\mathit{x_{\mathrm{2}}\left ( t \right )}}$ are two time domain causal signals, then their convolution is defined as,
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )\ast x_{\mathrm{2}}\left ( t \right )\mathrm{\, =\,}\int_{\mathrm{0}}^{t}x_{\mathrm{1}}\left ( t-\tau \right )x_{\mathrm{2}}\left ( \tau \right )d\tau }}$$
Now, from the definition of Laplace transform, we have,
$$\mathrm{\mathit{L\left [ x_{\mathrm{1}}\left ( t \right )\ast x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\int_{\mathrm{0}}^{\infty }\left [\int_{\mathrm{0}}^{t} x_{\mathrm{1}}\left ( t-\tau \right )x_{\mathrm{2}}\left ( \tau \right )d\tau \right ]e^{-st}dt}}$$
$$\mathrm{\Rightarrow \mathit{L\left [ x_{\mathrm{1}}\left ( t \right )\ast x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\int_{\mathrm{0}}^{\infty }\left [\int_{\mathrm{0}}^{\infty } x_{\mathrm{1}}\left ( t-\tau \right )x_{\mathrm{2}}\left ( \tau \right )d\tau \right ]e^{-st}dt}}$$
Let $\mathrm{\mathit{\left ( t-\tau \right )\mathrm{\, =\,}u,}}$ then,
$$\mathrm{\mathit{t\mathrm{\, =\,}\left ( u\mathrm{\, +\,}\tau \right ) \: \mathrm{and}\: dt\mathrm{\, =\,}du}}$$
$$\mathrm{\mathit{\therefore L\left [ x_{\mathrm{1}}\left ( t \right )\ast\: x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\int_{\mathrm{0}}^{\infty }\left [\int_{\mathrm{0}}^{\infty }x_{\mathrm{1}}\left ( u \right )x_{\mathrm{2}}\left ( \tau \right )d\tau \right ]e^{-s\left ( u\mathrm{\, +\,}\tau \right )du}}}$$
Rearranging the integrations, we have,
$$\mathrm{\mathit{L\left [ x_{\mathrm{1}}\left ( t \right )\ast\: x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\int_{\mathrm{0}}^{\infty }x_{\mathrm{1}}\left ( u \right )e^{-su}du\int_{\mathrm{0}}^{\infty }x_{\mathrm{2}}\left ( \tau \right )e^{-st}d\tau }} $$
$$\mathrm{\mathit{\therefore L\left [ x_{\mathrm{1}}\left ( t \right )\ast\: x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}X_{\mathrm{1}}\left ( s \right )X_{\mathrm{2}}\left ( s \right ) }} $$
Or it can be represented as,
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )\ast\: x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow}X_{\mathrm{1}}\left ( s \right )X_{\mathrm{2}}\left ( s \right ) }}$$
Therefore, it proves the time convolution property of the Laplace transform.
Convolution in s-Domain Property of Laplace Transform
Statement – The convolution in s-domain property, also known as multiplication property or modulation property of Laplace transform. The frequency convolution property of Laplace transform states that the Laplace transform of product of two time domain signals is equivalent to the convolution of their respective Laplace transforms. Therefore, if
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )\: \overset{LT}{\leftrightarrow}X_{\mathrm{1}}\left ( s \right )\; \; \mathrm{and}\; \; x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow}X_{\mathrm{2}}\left ( s \right ) }}$$
Then,
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )\: x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow}\frac{\mathrm{1}}{\mathrm{2}\pi j}\left [ X_{\mathrm{1}}\left ( s \right )\ast X_{\mathrm{2}}\left ( s \right ) \right ] }}$$
Proof
The inverse Laplace transform of $\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )}}$ is,
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )\mathrm{\, =\,}\frac{\mathrm{1}}{\mathrm{2}\pi j}\int_{\left ( \sigma -j\infty \right )}^{\left (\sigma \mathrm{\, +\,}j\infty \right )}X_{\mathrm{1}}\left ( p \right )e^{pt}\, dp}}$$
Thus, from the definition of the Laplace transform, we have,
$$\mathrm{\mathit{L\left [ x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\int_{-\infty }^{\infty }\left [ x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}\left ( t \right ) \right ]e^{-st}\, dt}}$$
$$\mathrm{\mathit{\Rightarrow L\left [ x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\int_{-\infty }^{\infty }\left [ \frac{\mathrm{1}}{\mathrm{2}\pi j}\int_{\left ( \sigma -j\infty \right )}^{\left (\sigma \mathrm{\, +\,}j\infty \right )}X_{\mathrm{1}}\left ( p \right )e^{pt}\, dp \right ]x_{\mathrm{2}}\left ( t \right )e^{-st}\, dt}}$$
Rearranging the order of integration, we have,
$$\mathrm{\mathit{ L\left [ x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\frac{\mathrm{1}}{\mathrm{2}\pi j}\int_{\left ( \sigma -j\infty \right )}^{\left (\sigma \mathrm{\, +\,}j\infty \right )}X_{\mathrm{1}}\left ( p \right )\left [\int_{-\infty }^{\infty }x_{\mathrm{2}}\left ( t \right ) e^{-\left ( s-p \right )t}\, dt \right ]\, dp}}$$
$$\mathrm{\Rightarrow \mathit{ L\left [ x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\frac{\mathrm{1}}{\mathrm{2}\pi j}\int_{\left ( \sigma -j\infty \right )}^{\left (\sigma \mathrm{\, +\,}j\infty \right )}X_{\mathrm{1}}\left ( p \right )X_{\mathrm{2}}\left ( s-p \right )\, dp}}$$
$$\mathrm{\therefore \mathit{ L\left [ x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\frac{\mathrm{1}}{\mathrm{2}\pi j}\left [ X_{\mathrm{1}}\left ( s \right )\ast X_{\mathrm{2}}\left ( s \right ) \right ]}}$$
Or it can also be represented as,
$$\mathrm{\mathit{ x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow}\frac{\mathrm{1}}{\mathrm{2}\pi j}\left [ X_{\mathrm{1}}\left ( s \right )\ast X_{\mathrm{2}}\left ( s \right ) \right ]}}$$
Thus, it proves the multiplication property or convolution in s-domain property of the Laplace transform.
Numerical Example (1)
A single $\mathrm{\mathit{x\left ( t \right )}}$ has Laplace transform as,
$$\mathrm{\mathit{X\left ( s \right )\mathrm{\, =\,}\frac{s\mathrm{\, +\,}\mathrm{3}}{s^{\mathrm{2}}\mathrm{\, +\,}\mathrm{2}s\mathrm{\, +\,}\mathrm{1}}}}$$
Then, find the Laplace transform of $\mathrm{\mathit{y\left ( t \right )\mathrm{\, =\,}x\left ( t \right )\ast x\left ( t \right )}}$.
Solution
The given Laplace transform of $\mathrm{\mathit{x\left ( t \right )}}$ is,
$$\mathrm{\mathit{X\left ( s \right )\mathrm{\, =\,}\frac{s\mathrm{\, +\,}\mathrm{3}}{s^{\mathrm{2}}\mathrm{\, +\,}\mathrm{2}s\mathrm{\, +\,}\mathrm{1}}}}$$
Then, the Laplace transform of $\mathrm{\mathit{y\left ( t \right )}}$, i.e., Y(s) is,
$$\mathrm{\mathit{L\left [ y\left ( t \right ) \right ]\mathrm{\, =\,}Y\left ( s \right )\mathrm{\, =\,}L\left [ x\left ( t \right )\ast x\left ( t \right ) \right ]}}$$
Now, using time convolution property $\mathrm{\mathit{\left [\mathrm{i.e.,\: \: } x_{\mathrm{1}}\left ( t \right )\ast x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow} X_{\mathrm{1}}\left ( s \right )X_{\mathrm{2}}\left ( s \right ) \right ]}}$ of Laplace transform, we have,
$$\mathrm{\mathit{Y\left ( s \right )\mathrm{\, =\,}X\left ( s \right )\cdot X\left ( s \right )\mathrm{\, =\,}\left [ X\left ( s \right ) \right ]^{\mathrm{2}}}}$$
$$\mathrm{\mathit{\therefore Y\left ( s \right )\mathrm{\, =\,}\left [ \frac{s\mathrm{\, +\,}\mathrm{3}}{s^{\mathrm{2}}\mathrm{\, +\,}\mathrm{2}s\mathrm{\, +\,}\mathrm{1}} \right ]^{\mathrm{2}}}}$$
Numerical Example (2)
Using the convolution in s-domain property of the Laplace transform, find the Laplace transform of the function $\mathrm{\mathit{x\left ( t \right )\mathrm{\, =\,}\delta \left ( t \right )\, \mathrm{sin}\, \omega t}}$.
Solution
The given function is,
$$\mathrm{\mathit{x\left ( t \right )\mathrm{\, =\,}\delta \left ( t \right )\, \mathrm{sin}\, \omega t}}$$
Since we know,
$$\mathrm{\mathit{L\left [ \delta \left ( t \right ) \right ]\mathrm{\, =\,}\mathrm{1}\; \; \mathrm{and}\; \: L\left [ \mathrm{sin}\, \omega t \right ]\mathrm{\, =\,}\frac{\omega }{s^{\mathrm{2}}\mathrm{\, +\,}\omega ^{\mathrm{2}}}}}$$
Hence, by using the convolution in s-domain property {$\mathrm{\mathit{\mathrm{i.e.,\: \: } x_{\mathrm{1}}\left ( t \right ) x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow}\frac{\mathrm{1}}{\mathrm{2}\pi j} \left [X_{\mathrm{1}}\left ( s \right )\ast X_{\mathrm{2}}\left ( s \right ) \right ]}}$} of Laplace transform, we have,
$$L\left [ \delta \left ( t \right )\mathrm{sin}\, \omega t \right ]\mathrm{\, =\,}\frac{\mathrm{1}}{\mathrm{2}\pi j}\left ( \frac{\omega }{s^{\mathrm{2}}\mathrm{\, +\,}\omega ^{\mathrm{2}}} \right )$$
- Related Articles
- Time Convolution and Frequency Convolution Properties of Discrete-Time Fourier Transform
- Time Scaling and Frequency Shifting Properties of Laplace Transform
- Laplace Transform – Time Reversal, Conjugation, and Conjugate Symmetry Properties
- Signals and Systems – Properties of Laplace Transform
- Laplace Transform of Periodic Functions (Time Periodicity Property of Laplace Transform)
- Time Differentiation Property of Laplace Transform
- Time Integration Property of Laplace Transform
- Time Shifting Property of Laplace Transform
- Difference between Laplace Transform and Fourier Transform
- Difference between Z-Transform and Laplace Transform
- Relation between Laplace Transform and Fourier Transform
- Time Shifting and Frequency Shifting Properties of Discrete-Time Fourier Transform
- Signals and Systems – Properties of Discrete-Time Fourier Transform
- Convolution Property of Z-Transform
- Properties of Continuous-Time Fourier Transform (CTFT)
