Signals and Systems – Properties of Laplace Transform


Laplace Transform

The Laplace transform is a mathematical tool which is used to convert the differential equations in time domain into the algebraic equations in the frequency domain or s-domain.

Mathematically, the Laplace transform of a time-domain function $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ is defined as −

$$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\int_{\mathrm{0} }^{\mathrm{\infty} }\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-\mathit{st}}\:\mathit{dt}}}$$

Where, s is a complex variable and it is given by,

$$\mathrm{\mathit{s}\:\mathrm{=}\:\sigma \:\mathrm{+}\:\mathit{j\omega}}$$

And the operator L is called the Laplace transform operator which transforms the domain function $\mathit{x}\mathrm{\left(\mathit{t}\right)}$ into the frequency domain function X(s).

Properties of Laplace Transform

The following table highlights some of the important properties of Laplace transform −

PropertyFunction $\mathit{x}\mathrm{\left(\mathit{t}\right)}$Laplace Transform $\mathit{X}\mathrm{\left(\mathit{s}\right)}$
Notation$\mathrm{\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{t}\right)}}$$\mathrm{\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{s}\right)}}$
$\mathrm{\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{t}\right)}}$$\mathrm{\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{s}\right)}}$
Scalar Multiplication$\mathrm{\mathit{k}\mathit{x}\mathrm{\left(\mathit{t}\right)}}$$\mathrm{\mathit{k}\mathit{X}\mathrm{\left(\mathit{s}\right)}}$
Linearity$\mathrm{\mathit{a}\mathit{x}_{\mathrm{1}}\mathrm{\left( \mathit{t}\right)}\:\mathrm{+}\:\mathit{b}\mathit{x}_{\mathrm{2}}\mathrm{\left( \mathit{t}\right)}}$
$\mathrm{\mathit{a}\mathit{X}_{\mathrm{1}}\mathrm{\left( \mathit{s }\right)}\:\mathrm{+}\:\mathit{b}\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{s}\right)}}$
Time Shifting$\mathrm{\mathit{x}\mathrm{\left(\mathit{t-t_{\mathrm{0}}}\right)}}$$\mathrm{\mathit{e}^{- \mathit{t}_{\mathrm{0}}\mathit{s}}\mathit{X}\mathrm{\left(\mathit{s}\right)}}$
Frequency Shifting$\mathrm{\mathit{e}^{\mathit{-at}}\mathit{x}\mathrm{\left(\mathit{t}\right)}}$$\mathrm{\mathit{X}\mathrm{\left(\mathit{s\mathrm{+}}\mathit{a} \right)}}$
Time Scaling$\mathrm{\mathit{x}\mathrm{\left(\mathit{at}\right)}}$$\mathrm{\frac{1}{\left| \mathit{a}\right|}\mathit{X}\mathrm{\left ( \frac{\mathit{s}}{\mathit{a}}\right)}}$
Differentiation in Time Domain$\mathrm{\frac{\mathit{d}}{\mathit{dt}}\:\mathit{x}\mathrm{\left(\mathit{t}\right)}}$$\mathrm{\mathit{s}\mathit{X}\mathrm{\left(\mathit{s}\right)}-\mathit{x}\mathrm{\left(\mathrm{0}^{-}\right)}}$
$\mathrm{\frac{\mathit{d}^{\mathrm{2}}}{\mathit{dt}^{\mathrm{2}}}\:\mathit{x}\mathrm{\left(\mathit{t}\right)}}$$\mathrm{\mathit{s}^{\mathrm{2}}\mathit{X}\mathrm{\left(\mathit{s}\right)}-\mathit{s}\mathit{x}\mathrm{\left(\mathrm{0}^{-}\right)}-\frac{\mathit{d}}{\mathit{dt}}\:\mathit{x}\mathrm{\left(\mathrm{0}^{-}\right)}}$
$\mathrm{\frac{\mathit{d}^{\mathit{n}}}{\mathit{dt}^{\mathit{n}}}\:\mathit{x}\mathrm{\left(\mathit{t}\right)}}$$\mathrm{\mathit{s}^{\mathit{n}}\mathit{X}\mathrm{\left(\mathit{s}\right)}-\mathit{s}^\mathrm{\left(\mathit{n-\mathrm{1}}\right)}\mathit{x}\mathrm{\left(\mathrm{0}^{-}\right)}-...-\frac{\mathit{d^{\mathrm{\left ( \mathit{n-\mathit{1}} \right )}}}}{\mathit{dt}^{\mathrm{\left (\mathit{n-\mathit{1}} \right)}} } \mathit{x}\mathrm{\left(\mathrm{0}^{-}\right)}}$
Integration in Time Domain$\mathrm{\int_{\mathrm{0}^{-}}^{\mathit{t}}\mathit{x}\mathrm{\left(\mathit{\tau}\right)}\:\mathit{d\tau}}$$\mathrm{\frac{\mathit{X}\mathrm{\left(\mathit{s}\right)}}{\mathit{s}}}$
$\mathrm{\int_{\mathrm{-\infty }}^{\mathit{t}}\mathit{x}\mathrm{\left(\mathit{\tau}\right)}\:\mathit{d\tau}}$$\mathrm{\frac{\mathit{X}\mathrm{\left(\mathit{s}\right)}}{\mathit{s}}\:\mathrm{+}\:\frac{1}{\mathit{s}}\int_{-\infty }^{\mathrm{0}^{-}}\mathit{x}\mathrm{\left(\mathit{\tau}\right)}\:\mathit{d\tau}}$
Differentiation in Frequency Domain$\mathrm{\mathit{t}\mathit{x}\mathrm{\left(\mathit{t}\right)}}$$\mathrm{-\frac{\mathit{d}}{\mathit{ds}}\mathit{X}\mathrm{\left(\mathit{s}\right)}}$
$\mathrm{\mathit{t}^{\mathit{n}}\mathit{x}\mathrm{\left(\mathit{t}\right)}}$$\mathrm{\mathrm{\left ( -\mathrm{1} \right )}^{\mathit{n}}\frac{\mathit{d}^{\mathit{n}}}{\mathit{ds}^{\mathit{n}}}\mathit{X}\mathrm{\left(\mathit{s}\right)}}$
Integration in Frequency Domain$\mathrm{\frac{\mathit{x}\mathrm{\left(\mathit{t}\right)}}{\mathit{t}}}$$\mathrm{\int_{\mathit{s}}^{\infty}\mathit{X}\mathrm{\left(\mathit{s}\right)}\:\mathit{ds}}$
Time Convolution$\mathrm{\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{t}\right)}*\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{t}\right)}}$$\mathrm{\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{s}\right)}\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{s}\right)}}$
Convolution in Frequency Domain$\mathrm{\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{t}\right)}\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{t}\right)}}$$\mathrm{\frac{1}{2\pi \mathit{j}}\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{s}\right)}*\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\frac{1}{2\pi \mathit{j}}\int_{\mathrm{\left ( \mathit{c-\mathit{j\infty}}\right)}}^{\mathrm{\left ( \mathit{c\mathrm{+}\mathit{j\infty}}\right)}}\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{p}\right)}\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{s-p}\right)}\:\mathit{dp}}$
Time Periodicity$\mathrm{\mathit{x}\mathrm{\left(\mathit{t}\right)}\:\mathrm{=}\:\mathit{x}\mathrm{\left( \mathit{t}\mathrm{+}\mathit{nT}\right)}\:\mathrm{where},\mathit{n}\:\mathrm{=}\mathrm{1,2,3,}...}$$\mathrm{\frac{1}{\mathrm{\left( \mathrm{1}-\mathit{e^{-st}}\right)}}\mathit{X}^{'}\mathrm{\left(\mathit{s}\right)};\\mathrm{where},\mathit{X}^{'}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\int_{\mathrm{0}}^{\mathit{T}}\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-st}}\:\mathit{dt}}$
Initial Value Theorem$\mathrm{\mathit{x}\mathrm{\left(\mathrm{0}^{-}\right)}}$$\mathrm{\displaystyle \lim_{\mathit{s} \to \infty }\mathit{s}\mathit{X}\mathrm{\left(\mathit{s}\right)}}$
Final Value Theorem$\mathrm{\mathit{x}\mathrm{\left(\mathit{\infty }\right)}}$$\mathrm{\displaystyle \lim_{\mathit{s} \to 0}\mathit{s}\mathit{X}\mathrm{\left(\mathit{s}\right)}}$

Updated on: 11-Jan-2022

4K+ Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements