- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
The angles of a triangle are $ x, y $ and $ 40^{\circ} $. The difference between the two angles $ x $ and $ y $ is $ 30^{\circ} $. Find $ x $ and $ y $.
Given:
The angles of a triangle are \( x, y \) and \( 40^{\circ} \). The difference between the two angles \( x \) and \( y \) is \( 30^{\circ} \).
To do:
We have to find \( x \) and \( y \).
Solution:
We know that,
The sum of the angles of a triangle is $180^o$
Therefore,
$x+y+40^o=180^o$
$x+y=180^o-40^o$
$x+y=140^o$..........(i)
The difference between the two angles \( x \) and \( y \) is \( 30^{\circ} \).
This implies,
$x-y=30^o$........(ii)
Adding (i) and (ii), we get,
$2x=140^o+30^o$
$x=\frac{170^o}{2}$
$x=85^o$
$\Rightarrow y=85^o-30^o$
$y=55^o$
Hence, $x=85^o$ and $y=55^o$.
- Related Articles
- The angles of a cyclic quadrilateral \( A B C D \) are\( \angle \mathrm{A}=(6 x+10)^{\circ}, \angle \mathrm{B}=(5 x)^{\circ}, \angle \mathrm{C}=(x+y)^{\circ}, \angle \mathrm{D}=(3 y-10)^{\circ} \)Find \( x \) and \( y \), and hence the values of the four angles.
- In \( \Delta X Y Z, X Y=X Z \). A straight line cuts \( X Z \) at \( P, Y Z \) at \( Q \) and \( X Y \) produced at \( R \). If \( Y Q=Y R \) and \( Q P=Q Z \), find the angles of \( \Delta X Y Z \).
- \( \mathrm{ABCD} \) is a square with \( \angle \mathrm{ABD}=45^{\circ} \). Find the\nmeasures of the angles \( x, y \) and \( z \)"\n
- Solve the following system of equations:$\frac{44}{x+y} +\frac{30}{x-y}=10$$\frac{55}{x+y}+\frac{40}{x-y}=13$
- If \( 2 x+y=23 \) and \( 4 x-y=19 \), find the values of \( 5 y-2 x \) and \( \frac{y}{x}-2 \).
- If $x=34$ and $y=x$, what is the value of $x+y$?
- Find a relation between $x$ and $y$, if the points $(x, y), (1, 2)$ and $(7, 0)$ are collinear.
- If $x=a,\ y=b$ is the solution of the pair of equations $x-y=2$ and $x+y=4$, find the value of $a$ and $b$.
- LCM of two prime number $x$ and $y( x>y)$ is $161$. Find value of $3y-x$.
- Determine graphically the coordinates of the vertices of a triangle, the equations of whose sides are:$y=x, y=2x$ and $y+x=6$
- Find larger of x^y and y^x in C++
- Find the values of the angles \( x, y, \) and \( z \) in each of the following:"\n
- The angles of a triangle are $(x - 40)^o, (x - 20)^o$ and $(\frac{1}{2}x - 10)^o$. Find the value of $x$.
- Subtract $24 x y-10 y-18 x$ from $30 x y +12 y+14 x$
- If $x^2 + y^2 = 29$ and $xy = 2$, find the value of(i) $x + y$(ii) $x - y$(iii) $x^4 + y^4$

Advertisements