- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In $ \Delta X Y Z, X Y=X Z $. A straight line cuts $ X Z $ at $ P, Y Z $ at $ Q $ and $ X Y $ produced at $ R $. If $ Y Q=Y R $ and $ Q P=Q Z $, find the angles of $ \Delta X Y Z $.
Given :
In Triangle XYZ ,
XY = XZ , YQ = YR ; QP = QZ.
To Find :
$$\displaystyle \angle XYZ\ ,\ \angle XZY\ ,\ \angle YXZ\ \ $$
Solution :
In triangle XYZ ,
XY = XZ
So, let's take
$\displaystyle \ \angle XYZ\ =\ \angle XZY\ =\ a$
In triangle YRQ ,
YQ = YR
So, let's take
$\displaystyle \ \angle YQR\ =\ \angle YRQ\ =\ b$
In triangle PQZ ,
PQ = QZ
So, let's take
$\displaystyle \ \angle PZQ\ =\ \angle QPZ\ =\ a$
For triangle YRQ, 'a' is Exterior angle, and 'b' , 'b' are interior angles.
By Exterior angle property,
Sum of two angles is equal to Exterior angle opposite to them.
$a=b+b$
$a=2b$............................... ( i)
$∠YQR =∠PQZ=b$ (Vertically opposite angles)
In triangle PQZ,
Sum of all angles of triangle is equal to 180°
$a+a+b=180°$
$2a+b=180°$ ...............................( ii)
Substitute (i) in (ii)
$2a+b=180°$
$2(2b)+b=180°$
$4b+b=180°$
$5b=180°$
$b=\frac{180°}{5}$
$b=36°$
Substitute b = 36° in (i)
$a=2b$
$a=2\times36°$
$a=72°$
$∠XYZ\ =∠XZY=a$
So,
∠XYZ = 72° and
∠XZY = 72°
$\angle XYZ\ \ +\ \angle XZY\ +\ \angle YZX\ =\ 180°$
72° +72° + ∠YZX = 180°
144° + ∠YZX =180°
∠YZX = 180° $-$144°
∠YZX = 36°
So, the angles of triangle XYZ are,
$\angle XYZ =72°$
$\angle XZY =72°$
$\angle YZX =36°$.