If $ 2 x+y=23 $ and $ 4 x-y=19 $, find the values of $ 5 y-2 x $ and $ \frac{y}{x}-2 $.
Given:
$2x + y = 23$ and $4x - y = 19$
To find:
$(5y - 2x)$ and $\left(\frac{y}{x} \ -\ 2\right)$
Solution:
$2x + y = 23$ ...(i)
$4x - y = 19$ ...(ii)
Adding (i) and (ii), we get,
$2x + y + 4x - y = 23 + 19$
$6x = 42$
$x\ =\ \frac{42}{6}$
$x = 7$
Putting this value of $x$ in (i), we get,
$2(7) + y = 23$
$14 + y = 23$
$y = 23 - 14$
$y = 9$
After solving (i) and (ii) we get the values of $x$ and $y$. Using them to calculate the values of $(5y - 2x)$ and $\left(\frac{y}{x} \ -\ 2\right)$.
a) $5y - 2x$
$= 5(9) - 2(7)$
$= 45 - 14$
$= \mathbf{31}$
b) $\left(\frac{y}{x} \ -\ 2\right)$
$= \left(\frac{9}{7} \ -\ 2\right)$
$= \left(\frac{9\ -\ 14}{7}\right)$
$= \mathbf{-\frac{5}{7}}$
So, values of $(5y - 2x)$ and $\left(\frac{y}{x} \ -\ 2\right)$ are $\mathbf{31}$ and $\mathbf{-\frac{5}{7}}$ respectively.
- Related Articles
- Find $25 x^{2}+16 y^{2}$, if $5 x+4 y=8$ and $x y=1$.
- If $\frac{x+1}{y} = \frac{1}{2}, \frac{x}{y-2} = \frac{1}{2}$, find x and y.
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Simplify: \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \).
- If $x^2 + y^2 = 29$ and $xy = 2$, find the value of(i) $x + y$(ii) $x - y$(iii) $x^4 + y^4$
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- Factorize:$4(x - y)^2 - 12(x -y) (x + y) + 9(x + y)^2$
- If $x + y = 4$ and $xy = 2$, find the value of $x^2 + y^2$.
- Find the following products:\( \left(\frac{x}{2}+2 y\right)\left(\frac{x^{2}}{4}-x y+4 y^{2}\right) \)
- Solve the following pairs of equations:\( \frac{2 x y}{x+y}=\frac{3}{2} \)\( \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠ 0,2 x-y ≠ 0 \)
- Find the product $-\frac{2}{5} x^{2} y^{2}(\frac{3 x}{2}-y^{2})$.
- Check if the following is true.\( (x+y)^{2}=(x-y)^{2}+4 x y \)
- Solve the following system of equations:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
- Solve the following system of equations:$\frac{10}{x+y} +\frac{2}{x-y}=4$$\frac{15}{x+y}-\frac{9}{x-y}=-2$
- Verify : (i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
Kickstart Your Career
Get certified by completing the course
Get Started