- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return the outer product of two masked Three-Dimensional Numpy arrays
To return the outer product of two 3D masked arrays, use the ma.outer() method in Python Numpy. The first parameter is the input vector. Input is flattened if not already 1-dimensional. The second parameter is the second input vector. Input is flattened if not already 1-dimensional.
A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
Steps
At first, import the required library −
import numpy as np
Create Array1, a 3D array with int elements using the numpy.arange() method −
arr1 = np.arange(24).reshape((2,3,4)) print("Array1...
", arr1) print("
Array type...
", arr1.dtype)
Create masked array1 −
arr1 = ma.array(arr1)
Mask Array1 −
arr1[0, 0, 1] = ma.masked
Display Masked Array 1 −
print("
Masked Array1...
",arr1)
Creating another 3D array2 with int elements using the numpy.arange() method −
arr2 = np.arange(24).reshape((2,3,4)) print("
Array2...
", arr2) print("
Array type...
", arr2.dtype)
Create masked array2 −
arr2 = ma.array(arr2)
Mask Array2 −
arr2[0, 1, 2] = ma.masked arr2[1, 2, 2] = ma.masked
Display Masked Array 2 −
print("
Masked Array2...
",arr2)
To return the outer product of two masked arrays, use the ma.outer() method in Python Numpy
print("
Result of outer product (3D arrays)...
",np.ma.outer(arr1, arr2))
Example
import numpy as np import numpy.ma as ma # Array 1 # Creating a 3D array with int elements using the numpy.arange() method arr1 = np.arange(24).reshape((2,3,4)) print("Array1...
", arr1) print("
Array type...
", arr1.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr1.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr1.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr1.size) # Create a masked array arr1 = ma.array(arr1) # Mask Array1 arr1[0, 0, 1] = ma.masked # Display Masked Array 1 print("
Masked Array1...
",arr1) # Array 2 # Creating another 3D array with int elements using the numpy.arange() method arr2 = np.arange(24).reshape((2,3,4)) print("
Array2...
", arr2) print("
Array type...
", arr2.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr2.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr2.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr2.size) # Create a masked array arr2 = ma.array(arr2) # Mask Array2 arr2[0, 1, 2] = ma.masked arr2[1, 2, 2] = ma.masked # Display Masked Array 2 print("
Masked Array2...
",arr2) # To return the outer product of two masked arrays, use the ma.outer() method in Python Numpy print("
Result of outer product (3D arrays)...
",np.ma.outer(arr1, arr2))
Output
Array1... [[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]] Array type... int64 Array Dimensions... 3 Our Array Shape... (2, 3, 4) Elements in the Array... 24 Masked Array1... [[[0 -- 2 3] [4 5 6 7] [8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]] Array2... [[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]] Array type... int64 Array Dimensions... 3 Our Array Shape... (2, 3, 4) Elements in the Array... 24 Masked Array2... [[[0 1 2 3] [4 5 -- 7] [8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 -- 23]]] Result of outer product (3D arrays)... [[0 0 0 0 0 0 -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -- 0] [-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --] [0 2 4 6 8 10 -- 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 -- 46] [0 3 6 9 12 15 -- 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 -- 69] [0 4 8 12 16 20 -- 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 -- 92] [0 5 10 15 20 25 -- 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 -- 115] [0 6 12 18 24 30 -- 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 -- 138] [0 7 14 21 28 35 -- 49 56 63 70 77 84 91 98 105 112 119 126 133 140 147 -- 161] [0 8 16 24 32 40 -- 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 -- 184] [0 9 18 27 36 45 -- 63 72 81 90 99 108 117 126 135 144 153 162 171 180 189 -- 207] [0 10 20 30 40 50 -- 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 -- 230] [0 11 22 33 44 55 -- 77 88 99 110 121 132 143 154 165 176 187 198 209 220 231 -- 253] [0 12 24 36 48 60 -- 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252 -- 276] [0 13 26 39 52 65 -- 91 104 117 130 143 156 169 182 195 208 221 234 247 260 273 -- 299] [0 14 28 42 56 70 -- 98 112 126 140 154 168 182 196 210 224 238 252 266 280 294 -- 322] [0 15 30 45 60 75 -- 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 -- 345] [0 16 32 48 64 80 -- 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 -- 368] [0 17 34 51 68 85 -- 119 136 153 170 187 204 221 238 255 272 289 306 323 340 357 -- 391] [0 18 36 54 72 90 -- 126 144 162 180 198 216 234 252 270 288 306 324 342 360 378 -- 414] [0 19 38 57 76 95 -- 133 152 171 190 209 228 247 266 285 304 323 342 361 380 399 -- 437] [0 20 40 60 80 100 -- 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 -- 460] [0 21 42 63 84 105 -- 147 168 189 210 231 252 273 294 315 336 357 378 399 420 441 -- 483] [0 22 44 66 88 110 -- 154 176 198 220 242 264 286 308 330 352 374 396 418 440 462 -- 506] [0 23 46 69 92 115 -- 161 184 207 230 253 276 299 322 345 368 391 414 437 460 483 -- 529]]
- Related Articles
- Return the outer product of two masked One-Dimensional Numpy arrays
- Return the inner product of two masked Three Dimensional arrays in Numpy
- Return the outer product of two masked arrays in Numpy
- Return the inner product of two masked One-Dimensional arrays in Numpy
- Return the outer product of two masked arrays with different shapes in Numpy
- Return the inner product of two masked arrays in Numpy
- Return the dot product of two masked arrays in Numpy
- Return the inner product of two masked arrays with different shapes in Numpy
- Get the Outer product of two One-Dimensional arrays in Python
- Return the dot product of two masked arrays and set whether masked data is propagated in Numpy
- Return the common filling value of two masked arrays in Numpy
- Get the Outer product of two arrays in Python
- Get the Outer product of two multidimensional arrays in Python
- Apply the ufunc outer() function to all pairs of a One-Dimensional Arrays in Numpy
- Matrix product of two arrays in Numpy
