Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Apply the ufunc outer() function to all pairs of a One-Dimensional Arrays in Numpy
We will apply the ufunc outer() function to all pairs of One-Dimensional arrays. The numpy.ufunc has functions that operate element by element on whole arrays. The ufuncs are written in C (for speed) and linked into Python with NumPy’s ufunc facility.
A universal function (or ufunc for short) is a function that operates on ndarrays in an element-byelement fashion, supporting array broadcasting, type casting, and several other standard features. That is, a ufunc is a "vectorized" wrapper for a function that takes a fixed number of specific inputs and produces a fixed number of specific outputs.
Steps
At first, import the required library −
import numpy as np
The numpy.ufunc has functions that operate element by element on whole arrays. The ufuncs are written in C (for speed) and linked into Python with NumPy's ufunc facility −
Create two 1D arrays −
arr1 = np.array([5, 10, 15, 20, 25, 30, 35, 40]) arr2 = np.array([7, 14, 21, 28, 35])
Display the arrays −
print("Array 1...
", arr1)
print("
Array 2...
", arr2)
Get the type of the arrays −
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)
Get the dimensions of the Arrays −
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)
Get the shape of the Arrays −
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)
Apply the ufunc outer() function to all pairs of 1D arrays −
res = np.multiply.outer(arr1, arr2)
print("
Result...
",res)
print("
Shape...
",res.shape)
Example
import numpy as np
# The numpy.ufunc has functions that operate element by element on whole arrays.
# ufuncs are written in C (for speed) and linked into Python with NumPy's ufunc facility
# Create two 1D arrays
arr1 = np.array([5, 10, 15, 20, 25, 30, 35, 40])
arr2 = np.array([7, 14, 21, 28, 35])
# Display the arrays
print("Array 1...
", arr1)
print("
Array 2...
", arr2)
# Get the type of the arrays
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)
# Get the dimensions of the Arrays
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)
# Get the shape of the Arrays
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)
# Apply the ufunc outer() function to all pairs of 1D arrays
res = np.multiply.outer(arr1, arr2)
print("
Result...
",res)
print("
Shape...
",res.shape)
Output
Array 1... [ 5 10 15 20 25 30 35 40] Array 2... [ 7 14 21 28 35] Our Array 1 type... int64 Our Array 2 type... int64 Our Array 1 Dimensions... 1 Our Array 2 Dimensions... 1 Our Array 1 Shape... (8,) Our Array 2 Shape... (5,) Result... [[ 35 70 105 140 175] [ 70 140 210 280 350] [ 105 210 315 420 525] [ 140 280 420 560 700] [ 175 350 525 700 875] [ 210 420 630 840 1050] [ 245 490 735 980 1225] [ 280 560 840 1120 1400]] Shape... (8, 5)