- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return the common filling value of two masked arrays in Numpy
To return the common filling value of two masked arrays, use the ma.common_fill_value() method in Python Numpy. If maskArray1.fill_value == maskArray2.fill_value, return the fill value, otherwise return None.
A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[65, 68, 81], [93, 33, 76], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr)
Get the dimensions of the Array −
print("
Array Dimensions...
",arr.ndim)
Create a masked array 1 and mask some of them as invalid. The fill value is set using the "fill_value" parameter −
maskArr1 = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]], fill_value = 9999) print("
Our Masked Array 1
", maskArr1)
Create a masked array 2 and mask some of them as invalid. The fill value is set using the "fill_value" parameter −
maskArr2 = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0], [0, 1, 0], [0, 1, 0]], fill_value = 9999) print("
Our Masked Array 2
", maskArr2)
To return the common filling value of two masked arrays, use the ma.common_fill_value() method in Python Numpy. If maskArray1.fill_value == maskArray2.fill_value, return the fill value, otherwise return None −
print("
Result ( common filling value)
", np.ma.common_fill_value(maskArr1, maskArr2))
Example
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[65, 68, 81], [93, 33, 76], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array 1 and mask some of them as invalid # The fill value is set using the "fill_value" parameter maskArr1 = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]], fill_value = 9999) print("
Our Masked Array 1
", maskArr1) # Create a masked array 2 and mask some of them as invalid # The fill value is set using the "fill_value" parameter maskArr2 = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0], [0, 1, 0], [0, 1, 0]], fill_value = 9999) print("
Our Masked Array 2
", maskArr2) # To return the common filling value of two masked arrays, use the ma.common_fill_value() method in Python Numpy # If maskArray1.fill_value == maskArray2.fill_value, return the fill value, otherwise return None print("
Result ( common filling value)
", np.ma.common_fill_value(maskArr1, maskArr2))
Output
Array... [[65 68 81] [93 33 76] [73 88 51] [62 45 67]] Array Dimensions... 2 Our Masked Array 1 [[-- -- 81] [93 33 76] [73 -- 51] [62 -- 67]] Our Masked Array 2 [[65 68 --] [93 -- 76] [73 -- 51] [62 -- 67]] Result ( common filling value) 9999
- Related Articles
- Return the inner product of two masked arrays in Numpy
- Return the dot product of two masked arrays in Numpy
- Return the outer product of two masked arrays in Numpy
- Return the outer product of two masked Three-Dimensional Numpy arrays
- Return the outer product of two masked One-Dimensional Numpy arrays
- Return the inner product of two masked One-Dimensional arrays in Numpy
- Return the inner product of two masked Three Dimensional arrays in Numpy
- Return the inner product of two masked arrays with different shapes in Numpy
- Return the outer product of two masked arrays with different shapes in Numpy
- Return the dot product of two masked arrays and set whether masked data is propagated in Numpy
- Return the absolute value of a masked Array in NumPy
- Return the transpose of the masked array in NumPy
- Return the length of the masked array in Numpy
- Concatenate a sequence of masked arrays in Numpy
- Join a sequence of masked arrays in Numpy
