Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return the outer product of two masked arrays in Numpy
To return the outer product of two masked arrays, use the ma.outer() method in Python Numpy. The first parameter is the input vector. Input is flattened if not already 1-dimensional. The second parameter is the second input vector. Input is flattened if not already 1-dimensional.
A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
Steps
At first, import the required library −
import numpy as np
Creating Array1, a 3x3 array with int elements using the numpy.arange() method −
arr1 = np.arange(9).reshape((3,3))
print("Array1...
", arr1)
print("
Array type...
", arr1.dtype)
Create masked array 1 −
arr1 = ma.array(arr1)
Mask Array1 −
arr1[0, 1] = ma.masked arr1[1, 1] = ma.masked
Display Masked Array 1 −
print("
Masked Array1...
",arr1)
Creating Array2, with int elements using the numpy.arange() method −
arr2 = np.arange(9).reshape((3,3))
print("
Array2...
", arr2)
print("
Array type...
", arr2.dtype)
Create masked array2 −
arr2 = ma.array(arr2)
Mask Array2 −
arr2[2, 1] = ma.masked arr2[2, 2] = ma.masked
Display Masked Array 2 −
print("
Masked Array2...
",arr2)
To return the outer product of two masked arrays, use the ma.outer() method in Python Numpy. The masked values are replaced by 0 −
print("
Result...
",np.ma.outer(arr1, arr2))
Example
import numpy as np
import numpy.ma as ma
# Array 1
# Creating a 3x3 array with int elements using the numpy.arange() method
arr1 = np.arange(9).reshape((3,3))
print("Array1...
", arr1)
print("
Array type...
", arr1.dtype)
# Get the dimensions of the Array
print("
Array Dimensions...
",arr1.ndim)
# Get the shape of the Array
print("
Our Array Shape...
",arr1.shape)
# Get the number of elements of the Array
print("
Elements in the Array...
",arr1.size)
# Create a masked array
arr1 = ma.array(arr1)
# Mask Array1
arr1[0, 1] = ma.masked
arr1[1, 1] = ma.masked
# Display Masked Array 1
print("
Masked Array1...
",arr1)
# Array 2
# Creating another 3x3 array with int elements using the numpy.arange() method
arr2 = np.arange(9).reshape((3,3))
print("
Array2...
", arr2)
print("
Array type...
", arr2.dtype)
# Get the dimensions of the Array
print("
Array Dimensions...
",arr2.ndim)
# Get the shape of the Array
print("
Our Array Shape...
",arr2.shape)
# Get the number of elements of the Array
print("
Elements in the Array...
",arr2.size)
# Create a masked array
arr2 = ma.array(arr2)
# Mask Array2
arr2[2, 1] = ma.masked
arr2[2, 2] = ma.masked
# Display Masked Array 2
print("
Masked Array2...
",arr2)
# To return the outer product of two masked arrays, use the ma.outer() method in Python Numpy
# The masked values are replaced by 0
print("
Result...
",np.ma.outer(arr1, arr2))
Output
Array1... [[0 1 2] [3 4 5] [6 7 8]] Array type... int64 Array Dimensions... 2 Our Array Shape... (3, 3) Elements in the Array... 9 Masked Array1... [[0 -- 2] [3 -- 5] [6 7 8]] Array2... [[0 1 2] [3 4 5] [6 7 8]] Array type... int64 Array Dimensions... 2 Our Array Shape... (3, 3) Elements in the Array... 9 Masked Array2... [[0 1 2] [3 4 5] [6 -- --]] Result... [[0 0 0 0 0 0 0 -- --] [-- -- -- -- -- -- -- -- --] [0 2 4 6 8 10 12 -- --] [0 3 6 9 12 15 18 -- --] [-- -- -- -- -- -- -- -- --] [0 5 10 15 20 25 30 -- --] [0 6 12 18 24 30 36 -- --] [0 7 14 21 28 35 42 -- --] [0 8 16 24 32 40 48 -- --]]