Python - Frequency Distribution


Advertisements

Counting the frequency of occurrence of a word in a body of text is often needed during text processing. This can be achieved by applying the word_tokenize() function and appending the result to a list to keep count of the words as shown in the below program.

from nltk.tokenize import word_tokenize
from nltk.corpus import gutenberg

sample = gutenberg.raw("blake-poems.txt")

token = word_tokenize(sample)
wlist = []

for i in range(50):
    wlist.append(token[i])

wordfreq = [wlist.count(w) for w in wlist]
print("Pairs\n" + str(zip(token, wordfreq)))

When we run the above program, we get the following output −

[([', 1), (Poems', 1), (by', 1), (William', 1), (Blake', 1), (1789', 1), (]', 1), (SONGS', 2), (OF', 3), (INNOCENCE', 2), (AND', 1), (OF', 3), (EXPERIENCE', 1), (and', 1), (THE', 1), (BOOK', 1), (of', 2), (THEL', 1), (SONGS', 2), (OF', 3), (INNOCENCE', 2), (INTRODUCTION', 1), (Piping', 2), (down', 1), (the', 1), (valleys', 1), (wild', 1), (,', 3), (Piping', 2), (songs', 1), (of', 2), (pleasant', 1), (glee', 1), (,', 3), (On', 1), (a', 2), (cloud', 1), (I', 1), (saw', 1), (a', 2), (child', 1), (,', 3), (And', 1), (he', 1), (laughing', 1), (said', 1), (to', 1), (me', 1), (:', 1), (``', 1)]

Conditional Frequency Distribution

Conditional Frequency Distribution is used when we want to count words meeting specific crteria satisfying a set of text.

import nltk
#from nltk.tokenize import word_tokenize
from nltk.corpus import brown

cfd = nltk.ConditionalFreqDist(
          (genre, word)
          for genre in brown.categories()
          for word in brown.words(categories=genre))
categories = ['hobbies', 'romance','humor']
searchwords = [ 'may', 'might', 'must', 'will']
cfd.tabulate(conditions=categories, samples=searchwords)

When we run the above program, we get the following output −

          may might  must  will 
hobbies   131    22    83   264 
romance    11    51    45    43 
  humor     8     8     9    13 

Useful Video Courses


Video

Python Online Training

187 Lectures 17.5 hours

Malhar Lathkar

Video

Python Essentials Online Training

55 Lectures 8 hours

Arnab Chakraborty

Video

Learn Python Programming in 100 Easy Steps

136 Lectures 11 hours

In28Minutes Official

Video

Python with Data Science

Best Seller

75 Lectures 13 hours

Eduonix Learning Solutions

Video

Python 3 from scratch to become a developer in demand

Best Seller

70 Lectures 8.5 hours

Lets Kode It

Video

Python Data Science basics with Numpy, Pandas and Matplotlib

Most Popular

63 Lectures 6 hours

Abhilash Nelson

Advertisements