Python Program To Find the Smallest and Largest Elements in the Binary Search Tree

PythonServer Side ProgrammingProgramming

When it is required to find the smallest and the largest elements in a binary search tree, a binary tree class is created, and methods to add elements to the tree, search for a specific node are defined. An instance of the class is created, and is used with these methods.

Below is a demonstration of the same −

Example

 Live Demo

class BST_Node:
   def __init__(self, key):
      self.key = key
      self.left = None
      self.right = None
      self.parent = None

   def insert_elem(self, node):
      if self.key > node.key:
         if self.left is None:
            self.left = node
            node.parent = self
         else:
            self.left.insert_elem(node)
      elif self.key < node.key:
         if self.right is None:
            self.right = node
            node.parent = self
         else:
            self.right.insert_elem(node)

   def search_node(self, key):
      if self.key > key:
         if self.left is not None:
            return self.left.search_node(key)
         else:
            return None
      elif self.key < key:
         if self.right is not None:
            return self.right.search_node(key)
         else:
            return None
      return self

class BSTree:
   def __init__(self):
      self.root = None

   def add_elem(self, key):
      new_node = BST_Node(key)
      if self.root is None:
         self.root = new_node
      else:
         self.root.insert_elem(new_node)

   def search_node(self, key):
      if self.root is not None:
         return self.root.search_node(key)

   def get_smallest_elem(self):
      if self.root is not None:
         current = self.root
         while current.left is not None:
            current = current.left
         return current.key

   def get_largest_elem(self):
      if self.root is not None:
         current = self.root
         while current.right is not None:
            current = current.right
         return current.key

my_instance = BSTree()

print('Menu (Assume no duplicate keys)')
print('add ')
print('smallest')
print('largest')
print('quit')

while True:
   my_input = input('What operation would you perform ? ').split()

   operation = my_input[0].strip().lower()
   if operation == 'add':
      key = int(my_input[1])
      my_instance.add_elem(key)
   if operation == 'smallest':
      smallest = my_instance.get_smallest_elem()
      print('The smallest element is : {}'.format(smallest))
   if operation == 'largest':
      largest = my_instance.get_largest_elem()
      print('The largest element is : {}'.format(largest))
   elif operation == 'quit':
      break

Output

Menu (Assume no duplicate keys)
add <key>
smallest
largest
quit
What operation would you perform ? add 5
What operation would you perform ? add 8
What operation would you perform ? add 11
What operation would you perform ? add 0
What operation would you perform ? add 3
What operation would you perform ? smallest
The smallest element is : 0
What operation would you perform ? largest
The largest element is : 11
What operation would you perform ? quit’

Explanation

  • The ‘BST_Node’ class with required attributes is created.

  • It has an ‘init’ function that is used to set the left, right and parent nodes to ‘None’.

  • It has an ‘insert_element’ method that helps insert an element into the binary tree.

  • Another method named ‘search_node’ that searches for a specific node in the tree.

  • Another class named ‘BSTree’ is defined, where the root is set to ‘None’.

  • A method named ‘add_elem’ is defined that adds elements to the tree.

  • There is another method named ‘search_node’ that helps search for a specific node in the tree.

  • Another method named ‘get_smallest_node’ is defined that helps fetch the smallest node in the tree.

  • Another method named ‘get_largest_node’ is defined that helps fetch the largest node in the tree.

  • An object of the ‘BSTree’ class is created.

  • Based on the operation chosen by the user, the operation is performed.

raja
Published on 15-Apr-2021 13:37:31
Advertisements