
- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Python - Merge Pandas DataFrame with Left Outer Join
To merge Pandas DataFrame, use the merge() function. The left outer join is implemented on both the DataFrames by setting under the “how” parameter of the merge() function i.e. −
how = “left”
At first, let us import the pandas library with an alias −
import pandas as pd
Let’s create two DataFrames to be merged −
# Create DataFrame1 dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90] } ) # Create DataFrame2 dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } )
Merge DataFrames with common column Car and "left" in "how" parameter implements Left Outer Join −
mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="left")
Example
Following is the code −
import pandas as pd # Create DataFrame1 dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90] } ) print"DataFrame1 ...\n",dataFrame1 # Create DataFrame2 dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } ) print"\nDataFrame2 ...\n",dataFrame2 # merge DataFrames with common column Car and "left" in "how" parameter implements Left Outer Join mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="left") print"\nMerged dataframe with left outer join...\n", mergedRes
Output
This will produce the following output −
DataFrame1 ... Car Units 0 BMW 100 1 Lexus 150 2 Audi 110 3 Mustang 80 4 Bentley 110 5 Jaguar 90 DataFrame2 ... Car Reg_Price 0 BMW 7000 1 Lexus 1500 2 Tesla 5000 3 Mustang 8000 4 Mercedes 9000 5 Jaguar 6000 Merged dataframe with left outer join... Car Units Reg_Price 0 BMW 100 7000.0 1 Lexus 150 1500.0 2 Audi 110 NaN 3 Mustang 80 8000.0 4 Bentley 110 NaN 5 Jaguar 90 6000.0
- Related Questions & Answers
- Python - Merge Pandas DataFrame with Outer Join
- Python - Merge Pandas DataFrame with Right Outer Join
- Python - Merge Pandas DataFrame with Inner Join
- Python Pandas - Merge DataFrame with indicator value
- INNER JOIN vs FULL OUTER JOIN vs LEFT JOIN vs RIGHT JOIN?
- Python – Merge two Pandas DataFrame
- INNER JOIN vs FULL OUTER JOIN vs LEFT JOIN vs RIGHT JOIN in PostgreSQL?
- Difference Between Left, Right and Full Outer Join
- Merge Pandas DataFrame with a common column
- Python Pandas – Merge DataFrame with one-to-many relation
- Python Pandas – Merge DataFrame with many-to-one relation
- Python Pandas – Merge DataFrame with one-to-one relation
- Merge, Join and Concatenate DataFrames using Pandas
- Compare two tables and return missing ids using MySQL LEFT OUTER JOIN
- How to perform a left outer join using linq extension methods in C#?
Advertisements