
- Python Basic Tutorial
- Python - Home
- Python - Overview
- Python - Environment Setup
- Python - Basic Syntax
- Python - Comments
- Python - Variables
- Python - Data Types
- Python - Operators
- Python - Decision Making
- Python - Loops
- Python - Numbers
- Python - Strings
- Python - Lists
- Python - Tuples
- Python - Dictionary
- Python - Date & Time
- Python - Functions
- Python - Modules
- Python - Files I/O
- Python - Exceptions
Python - Merge Pandas DataFrame with Right Outer Join
To merge Pandas DataFrame, use the merge() function. The right outer join is implemented on both the DataFrames by setting under the “how” parameter of the merge() function i.e. −
how = “right”
At first, let us import the pandas library with an alias −
import pandas as pd
Create two dataframes to be merged −
# Create DataFrame1 dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90] } ) # Create DataFrame2 dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } )
Merge DataFrames with common column Car and "right" in "how" parameter implements Right Outer Join −
mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="right")
Example
Following is the code −
import pandas as pd # Create DataFrame1 dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],"Units": [100, 150, 110, 80, 110, 90] } ) print"DataFrame1 ...\n",dataFrame1 # Create DataFrame2 dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } ) print"\nDataFrame2 ...\n",dataFrame2 # merge DataFrames with common column Car and "right" in "how" parameter implements Right Outer Join mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="right") print"\nMerged dataframe with right outer join...\n", mergedRes
Output
This will produce the following output −
DataFrame1 ... Car Units 0 BMW 100 1 Lexus 150 2 Audi 110 3 Mustang 80 4 Bentley 110 5 Jaguar 90 DataFrame2 ... Car Reg_Price 0 BMW 7000 1 Lexus 1500 2 Tesla 5000 3 Mustang 8000 4 Mercedes 9000 5 Jaguar 6000 Merged dataframe with right outer join... Car Units Reg_Price 0 BMW 100.0 7000 1 Lexus 150.0 1500 2 Mustang 80.0 8000 3 Jaguar 90.0 6000 4 Tesla NaN 5000 5 Mercedes NaN 9000
- Related Articles
- Python - Merge Pandas DataFrame with Outer Join
- Python - Merge Pandas DataFrame with Left Outer Join
- Python - Merge Pandas DataFrame with Inner Join
- Python Pandas - Merge DataFrame with indicator value
- Python – Merge two Pandas DataFrame
- Python Pandas – Merge DataFrame with one-to-many relation
- Python Pandas – Merge DataFrame with many-to-one relation
- Python Pandas – Merge DataFrame with one-to-one relation
- Merge Pandas DataFrame with a common column
- INNER JOIN vs FULL OUTER JOIN vs LEFT JOIN vs RIGHT JOIN in PostgreSQL?
- Difference Between Left, Right and Full Outer Join
- Merge, Join and Concatenate DataFrames using Pandas
- Merge Python Pandas dataframe with a common column and set NaN for unmatched values
- How to Merge all CSV Files into a single dataframe – Python Pandas?
- Python - Filter Pandas DataFrame with numpy

Advertisements