# Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

To do:

We have to prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Solution:

Let a quadrilateral $ABCD$ is a quadrilateral circumscribing a circle with centre $O$.

$AB$ touches the circle at $P$.

Similarly,

$BC, CD$ and $DA$ touch the circle at $Q, R$ and $S$.

Join $OA, OB, OC, OD$ and $OP, OQ, OR, OS$.

$OA$ bisects $\angle \mathrm{POS}$

$\angle 1=\angle 2$

$\angle 3=\angle 4$

$\angle 5=\angle 6$

$\angle 7=\angle 8$

Therefore,

$\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ}$

$\angle 1+\angle 1+\angle 4+\angle 4+\angle 5+\angle 5+\angle 8+\angle 8=360^{\circ}$

$2[\angle 1+\angle 4+\angle 5+\angle 8]=360^{\circ}$

$(\angle 1+\angle 8+\angle 4+\angle 5)=180^{\circ}$

$\angle \mathrm{AOD}+\angle \mathrm{BOC}=180^{\circ}$

Similarly,

$\angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$

Hence, the opposite sides of quadrilateral circumscribing a circle subtend supplementary angles at the centre of a circle.

Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

57 Views

##### Kickstart Your Career

Get certified by completing the course