What is $ \frac{1}{25} $ of a kilogram? a. $ 50 \mathrm{~g} $
b. $ 25 \mathrm{~g} $
c. $ 40 \mathrm{~g} $
d. $ 500 \mathrm{~g} $
To do:
We have to find \( \frac{1}{25} \) of a kilogram.
Solution:
We know that,
1 kilogram $=$ 1000 grams
Therefore,
\( \frac{1}{25} \) of a kilogram $=\frac{1}{25}\times1000\ g$
$=40\ g$
\( \frac{1}{25} \) of a kilogram is 40 grams.
- Related Articles
- The mass of \( 2.43 \mathrm{L} \) of \( \mathrm{CH}_{4} \) at \( 1.5 \mathrm{atm} \) and \( 27^{\circ} \mathrm{C} \) isa) \( 1.6 \mathrm{g} \)b) \( 2.4 \mathrm{g} \)
- Find the gravitational force exerted between two objects A and \( B \), of mass \( 10 \mathrm{g} \) and \( 20 \mathrm{g} \) respectively, separated by a distance of \( 10 \mathrm{cm} \).
- A table-top measures \( 2 \mathrm{~m} 25 \mathrm{~cm} \) by \( 1 \mathrm{~m} 50 \mathrm{~cm} \). What is the perimeter of the table-top?
- From a rifle of mass \( 4 \mathrm{~kg} \), a bullet of mass \( 50 \mathrm{~g} \) is fired with an initial velocity of \( 35 \mathrm{~m} \mathrm{~s}^{-1} \). Calculate the initial recoil velocity of the rifle.
- Express as kg using decimals.(a) 2 g(b) 100 g(c) 3750 g(d) 5 kg 8 g(e) 26 kg 50 g
- If E,F,G and \( \mathrm{H} \) are respectively the mid-points of the sides of a parallelogram \( \mathrm{ABCD} \), show that \( \operatorname{ar}(\mathrm{EFGH})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD}) \)
- Write the ratio in the simplest form (lowest terms).(i) \( 600 \mathrm{~g} \) to \( 1 \mathrm{~kg} \)(ii) \( 50 \mathrm{p} \) to \( Rs. 2.50 \)(iii) \( 2 \mathrm{~L} \) to \( 800 \mathrm{~mL} \)(iv) \( 80 \mathrm{~cm} \) to \( 4 \mathrm{~m} \)
- In figure below, line segment \( \mathrm{DF} \) intersect the side \( \mathrm{AC} \) of a triangle \( \mathrm{ABC} \) at the point \( \mathrm{E} \) such that \( \mathrm{E} \) is the mid-point of \( \mathrm{CA} \) and \( \angle \mathrm{AEF}=\angle \mathrm{AFE} \). Prove that \( \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{BF}}{\mathrm{CE}} \)[Hint: Take point \( \mathrm{G} \) on \( \mathrm{AB} \) such that \( \mathrm{CG} \| \mathrm{DF} \).]"
- Medicine is packed in boxes, each weighing \( 4 \mathrm{~kg} 500 \mathrm{~g} \). How many such boxes can be loaded in a van which cannot carry beyond \( 800 \mathrm{~kg} \) ?
- Prove the following:If \( \tan \mathrm{A}=\frac{3}{4} \), then \( \sin \mathrm{A} \cos \mathrm{A}=\frac{12}{25} \)
- Bisectors of angles \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) of a triangle \( \mathrm{ABC} \) intersect its circumcircle at \( \mathrm{D}, \mathrm{E} \) and Frespectively. Prove that the angles of the triangle \( \mathrm{DEF} \) are \( 90^{\circ}-\frac{1}{2} \mathrm{~A}, 90^{\circ}-\frac{1}{2} \mathrm{~B} \) and \( 90^{\circ}-\frac{1}{2} \mathrm{C} \).
- An Aqueous solution labelled 20 per cent (w/w) NaOH has a density of 1.25 g/ml.Choose the correct statement:(a) Weight of solution per 100 ml is 100g.(b) 20g solute present in 100 g solvent.(c) 25 g solute is present in 100 g solution(d) 25 g solute is present in 80 g solution.
- If \( \triangle \mathrm{ABC} \) is right angled at \( \mathrm{C} \), then the value of \( \cos (\mathrm{A}+\mathrm{B}) \) is(A) 0(B) 1(C) \( \frac{1}{2} \)(D) \( \frac{\sqrt{3}}{2} \)
- In \( \Delta \mathrm{PQR}, \mathrm{PD} \perp \mathrm{QR} \) such that \( \mathrm{D} \) lies on \( \mathrm{QR} \). If \( \mathrm{PQ}=a, \mathrm{PR}=b, \mathrm{QD}=c \) and \( \mathrm{DR}=d \), prove that \( (a+b)(a-b)=(c+d)(c-d) \).
- If the point \( P(2,1) \) lies on the line segment joining points \( A(4,2) \) and \( B(8,4) \), then(A) \( \mathrm{AP}=\frac{1}{3} \mathrm{AB} \)(B) \( \mathrm{AP}=\mathrm{PB} \)(C) \( \mathrm{PB}=\frac{1}{3} \mathrm{AB} \)(D) \( \mathrm{AP}=\frac{1}{2} \mathrm{AB} \)
Kickstart Your Career
Get certified by completing the course
Get Started