- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Two pillars of equal heights stand on either side of a roadway, which is 150 m wide. At a point in the roadway between the pillars the elevations of the tops of the pillars are 60° and 30°. Find the height of the pillars and the position of the point.
Given :
Width of Road = 150 m
Angle of elevations of pillars = 60° and 30°
To Find :
Position of point from the pillars
Height of Pillars
Solution :
Lets take the Height tower = h
Position of point is at C.
BD = 150 m
CD = x ; BC = 150 - x
In ABC
$$\displaystyle tan\ 30° \ =\ \frac{h}{150-x} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ tan\ \theta \ =\ \frac{opposite}{hypotenusse}$$
$$\displaystyle \frac{1}{\sqrt{3}} \ =\ \frac{h}{150-x} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ tan\ 30° \ =\ \frac{1}{\sqrt{3}}$$
$150 - x \ \ = \ h √3$............................................(i)
In EDC
$$\displaystyle \begin{array}{{>{\displaystyle}l}}
tan\ 60° \ =\ \frac{h}{x} \ \ \\
\\
\sqrt{3\ } \ =\ \frac{h}{x} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ tan\ 60° \ =\ \sqrt{3} \ \
\end{array}$$
$x √3 = h$
$h = x √3............................................................. (ii)$
Substitute (ii) in (i)
$150 - x \ = \ (x√3) √3$
$150 - x \ = \ 3 x \ \ \ \ $
$150 = 3 x + x $
$150 = 4 x $
$4 x \ = \ 150 \ $
$$\displaystyle \begin{array}{{>{\displaystyle}l}}
x\ \ =\ \ \frac{150}{4} \ \\
\\
x\ \ =\ \ 37.5\
\end{array}$$
$ 150 - x \ = \ 150 - 37.5 \ = \ 112.5 $
Substitute x = 37.5 in (ii)
h = 37.5√3
so,
Position of point from the pillars BC = 112.5 m , CD = 37.5 m.
Height of the Pillars h = 37.5√3 m