- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# Two poles of equal heights are standing opposite to each other on either side of the road which is $ 80 \mathrm{~m} $ wide. From a point between them on the road the angles of elevation of the top of the poles are $ 60^{\circ} $ and $ 30^{\circ} $ respectively. Find the height of the poles and the distances of the point from the poles.

Given:

Two poles of equal heights are standing opposite to each other on either side of the road which is \( 80 \mathrm{~m} \) wide.

From a point between them on the road the angles of elevation of the top of the poles are \( 60^{\circ} \) and \( 30^{\circ} \) respectively.

To do:

We have to find the height of the poles and the distances of the point from the poles.

Solution:

Let $AB$ and $CD$ be the heights of the poles and $BD$ be the width of the road.

Let $O$ be the point of observation.

From the figure,

$\mathrm{BD}=80 \mathrm{~m}, \angle \mathrm{AOB}=60^{\circ}, \angle \mathrm{COD}=30^{\circ}$.

Let the heights of the poles be $\mathrm{AB}=\mathrm{CD}=h \mathrm{~m}$, the distance between the point $O$ and point $B$ be $\mathrm{BO}=x \mathrm{~m}$ and the distance between the point $O$ and point $D$ be $\mathrm{OD}=80-x \mathrm{~m}$.

We know that,

$\tan \theta=\frac{\text { Opposite }}{\text { Adjacent }}$

$=\frac{\text { AB }}{OB}$

$\Rightarrow \tan 60^{\circ}=\frac{h}{x}$

$\Rightarrow \sqrt3=\frac{h}{x}$

$\Rightarrow h=x\sqrt3 \mathrm{~m}$.........(i)

Similarly,

$\tan \theta=\frac{\text { Opposite }}{\text { Adjacent }}$

$=\frac{\text { CD }}{OD}$

$\Rightarrow \tan 30^{\circ}=\frac{h}{80-x}$

$\Rightarrow \frac{1}{\sqrt3}=\frac{h}{80-x}$

$\Rightarrow h=\frac{80-x}{\sqrt3} \mathrm{~m}$..........(ii)

From (i) and (ii), we get,

$\Rightarrow x\sqrt3=\frac{80-x}{\sqrt3} \mathrm{~m}$

$\Rightarrow (x\sqrt3)\sqrt3=80-x \mathrm{~m}$

$\Rightarrow 3x+x=80 \mathrm{~m}$

$\Rightarrow x=\frac{80}{4} \mathrm{~m}$

$\Rightarrow x=20 \mathrm{~m}$

$\Rightarrow 80-x=80-20=60 \mathrm{~m}$

$\Rightarrow h=20\sqrt3 \mathrm{~m}$

Therefore, the height of the poles is $20\sqrt3 \mathrm{~m}$, the distances of the point from the poles is $20 \mathrm{~m}$ and $60 \mathrm{~m}$ respectively.