The length of the fence of a trapezium-shaped field $ A B C D $ is $ 130 \mathrm{~m} $ and side $ A B $ is perpendicular to each of the parallel sides AD and $ B C $. If $ B C=54 \mathrm{~m}, C D=19 \mathrm{~m} $ and $ A D=42 \mathrm{~m} $, find the area of the field.
Given:
The length of the fence of a trapezium-shaped field \( A B C D \) is \( 130 \mathrm{~m} \) and side \( A B \) is perpendicular to each of the parallel sides AD and \( B C \).
\( B C=54 \mathrm{~m}, C D=19 \mathrm{~m} \) and \( A D=42 \mathrm{~m} \).
To do:
We have to find the area of the field.
Solution:
From the figure,
$BC=54\ m, CD=19\ m, AD=42\ m$
Perimeter$=$Length of the fence
$130\ m=AB+BC+CD+DA$
$130=AB+54+19+42$
$AB=130-115$
$AB=15\ m$
Area of the field$=\frac{1}{2}\times$Sum of parallel sides $\times$Perpendicular distance(AB)
$=\frac{1}{2}\times(42+54)\times15\ cm^2$
$=\frac{1}{2}\times96\times15\ cm^2$
$=48\times15\ cm^2$
$=720\ cm^2$
Related Articles A field is in the shape of a trapezium whose parallel sides are \( 25 \mathrm{~m} \) and \( 10 \mathrm{~m} \). The non-parallel sides are \( 14 \mathrm{~m} \) and \( 13 \mathrm{~m} \). Find the area of the field.
Find the areas of the rectangles whose sides are :(a) \( 3 \mathrm{~cm} \) and \( 4 \mathrm{~cm} \)(b) \( 12 \mathrm{~m} \) and \( 21 \mathrm{~m} \)(c) \( 2 \mathrm{~km} \) and \( 3 \mathrm{~km} \)(d) \( 2 \mathrm{~m} \) and \( 70 \mathrm{~cm} \)
A plot is in the form of a rectangle \( A B C D \) having semi-circle on \( B C \) as shown in figure below. If \( A B=60 \mathrm{~m} \) and \( B C=28 \mathrm{~m} \), find the area of the plot."\n
The length and breadth of three rectangles are as given below :(a) \( 9 \mathrm{~m} \) and \( 6 \mathrm{~m} \)(b) \( 17 \mathrm{~m} \) and \( 3 \mathrm{~m} \)(c) \( 4 \mathrm{~m} \) and \( 14 \mathrm{~m} \)Which one has the largest area and which one has the smallest?
Sides of a triangular field are \( 15 \mathrm{~m}, 16 \mathrm{~m} \) and \( 17 \mathrm{~m} \). With the three corners of the field a cow, a buffalo and a horse are tied separately with ropes of length \( 7 \mathrm{~m} \) each to graze in the field. Find the area of the field which cannot be grazed by three animals.
DL and \( B M \) are the heights on sides \( A B \) and AD respectively of parallelogram \( \mathrm{ABCD} \) (Fig 11.24). If the area of the parallelogram \( \mathrm{A} \) is \( 1470 \mathrm{~cm}^{2}, \mathrm{AB}=35 \mathrm{~cm} \) and \( \mathrm{AD}=49 \mathrm{~cm} \), find the length of \( \mathrm{BM} \)"\n
Naveen bought \( 3 \mathrm{~m} 20 \mathrm{~cm} \) cloth for his shirt and \( 2 \mathrm{~m} 5 \mathrm{~cm} \) cloth for his trousers. Find the total length of cloth bought by him.(a) \( 5.7 \mathrm{~m} \)(b) \( 5.25 \mathrm{~m} \)(c) \( 4.25 \mathrm{~m} \)(d) \( 5.00 \mathrm{~m} \)
The height of a person is \( 1.45 \mathrm{~m} \). Express it into \( \mathrm{c} \mathrm{m} \) and \( \mathrm{mm} \).
In the below figure, \( A B C D \) is a trapezium of area \( 24.5 \mathrm{~cm}^{2} . \) In it, \( A D \| B C, \angle D A B=90^{\circ} \), \( A D=10 \mathrm{~cm} \) and \( B C=4 \mathrm{~cm} \). If \( A B E \) is a quadrant of a circle, find the area of the shaded region. (Take \( \pi=22 / 7) \)."\n
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( A M=9 \) and \( C M=16 \), find the perimeter of \( \triangle \mathrm{ABC} \).
Find the areas of the squares whose sides are :(a) \( 10 \mathrm{~cm} \)(b) \( 14 \mathrm{~cm} \)(c) \( 5 \mathrm{~m} \)
In the figure below, \( A B C D \) is a trapezium with \( A B \| D C, A B=18 \mathrm{~cm}, D C=32 \mathrm{~cm} \) and the distance between \( A B \) and \( D C \) is \( 14 \mathrm{~cm} \). Circles of equal radii \( 7 \mathrm{~cm} \) with centres \( A, B, C \) and \( D \) have been drawn. Then, find the area of the shaded region of the figure. (Use \( \pi=22 / 7) \)."\n
In \( \triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC} \) and \( \mathrm{AM} \) is an altitude. If \( A M=15 \) and the perimeter of \( \triangle A B C \) is 50 , find the area of \( \triangle \mathrm{ABC} \).
In the figure, a circle touches all the four sides of a quadrilateral \( A B C D \) with \( A B=6 \mathrm{~cm}, B C=7 \mathrm{~cm} \) and \( C D=4 \mathrm{~cm} . \) Find \( A D \)."\n
In right triangle ABC, right angledat C. M is the mid-point of hypotenuse AB. C is joined to \( \mathrm{M} \) and produced to a point \( \mathrm{D} \) such that \( \mathrm{DM}=\mathrm{CM} \). Point \( \mathrm{D} \) is joined to point \( \mathrm{B} \). Show that:(i) \( \triangle A M C \cong \triangle B M D \)(ii) \( \angle \mathrm{DBC} \) is a right angle(iii) \( \triangle \mathrm{DBC} \cong \triangle \mathrm{ACB} \)(iv) $CM=\frac{1}{2}AB$"\n
Kickstart Your Career
Get certified by completing the course
Get Started