Solve the following expression:$\frac{X}{2}-\frac{1}{4}=\frac{X}{3}+\frac{1}{2}$
Solution:
$\frac{x}{2} - \frac{x}{3} = \frac{1}{2} + \frac{1}{4}$
$\frac{3x-2x}{6} = \frac{2+1}{4}$
$\frac{x}{6} = \frac{3}{4}$
$x = \frac{3}{4} \times 6 = \frac{9}{2}$ = 4.5
Therefore the value of $x$ is 4.5
- Related Articles
- Solve the expression:$x-\frac{1}{2}-x-\frac{2}{3} = x-\frac{4}{7}$
- Solve \( \frac{2 x+1}{3 x-2}=1\frac{1}{4} \).
- Solve the following:\( \frac{3}{4}(7 x-1)-\left(2 x-\frac{1-x}{2}\right)=x+\frac{3}{2} \)
- Solve for $x$:$\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$
- Solve the expression:$x-(2x-5x-\frac{1}{3}) = x-\frac{1}{3}+\frac{1}{2}$
- Solve the following linear equation.\( \frac{x}{2}-\frac{1}{5}=\frac{x}{3}+\frac{1}{4} \).
- Solve the following quadratic equation by factorization: $\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-4)}=\frac{1}{6}$
- $\frac{x-1}{2}+\frac{2 x-1}{4}=\frac{x-1}{3}-\frac{2 x-1}{6}$.
- Solve the following quadratic equation by factorization: $\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$
- Solve the expression$\frac{2x-1}{3} =\frac{x+2}{2}$
- Solve the following:$\frac{1}{x-2}+\frac{2}{x-1}=\frac{6}{x}$
- Solve for x:$\frac{1}{x+1} +\frac{2}{x+2} =\frac{4}{x+4} ;\ x\neq -1,\ -2,\ -4$
- Solve: \( \frac{x}{2}-\frac{1}{4}\left(x-\frac{1}{3}\right)=\frac{1}{6}(x+1)+\frac{1}{12} \)
- Solve for $x$:$\frac{1}{x}+\frac{2}{2x-3}=\frac{1}{x-2}, x≠0, \frac{3}{2}, 2$
- Solve the following quadratic equation by factorization: $\frac{x+1}{x-1}+\frac{x-2}{x+2}=4-\frac{2x+3}{x-2}, x ≠ 1, -2, 2$
Kickstart Your Career
Get certified by completing the course
Get Started