- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove the following trigonometric identities:$ \sin ^{2} A \cot ^{2} A+\cos ^{2} A \tan ^{2} A=1 $
To do:
We have to prove that \( \sin ^{2} A \cot ^{2} A+\cos ^{2} A \tan ^{2} A=1 \).
Solution:
We know that,
$\cot^2 A=\frac{\cos ^{2} A}{\sin^2 A}$.....(i)
$\tan^2 A=\frac{\sin ^{2} A}{\cos^2 A}$.....(ii)
$\cos ^{2} A+\sin^2 A=1$.......(iii)
Therefore,
$\sin ^{2} A \cot ^{2} A+\cos ^{2} A \tan ^{2} A=\sin ^{2} A(\frac{\cos ^{2} A}{\sin^2 A})+\cos ^{2} A(\frac{\sin ^{2} A}{\cos^2 A}) $ [From (i) and (ii)]
$=\cos ^{2} A+\sin^2 A$
$=1$ [From (iii)]
Hence proved.
Advertisements