- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove the following trigonometric identities:$ \frac{1+\cos A}{\sin ^{2} A}=\frac{1}{1-\cos A} $
To do:
We have to prove that \( \frac{1+\cos A}{\sin ^{2} A}=\frac{1}{1-\cos A} \).
Solution:
We know that,
$\sin ^{2} \theta+\cos^2 \theta=1$.......(i)
$(a+b)(a-b)=a^2-b^2$.........(ii)
Therefore,
$\frac{1+\cos A}{\sin ^{2} A}=\frac{1+\cos A}{1-\cos ^{2} A}$ [From (i)]
$=\frac{1+\cos A}{1^2-\cos ^{2} A}$
$=\frac{1+\cos A}{(1+\cos A)(1-\cos A)}$ [From (ii)]
$=\frac{1}{1-\cos A}$
Hence proved.
Advertisements