- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove the following trigonometric identities:$ \frac{1+\cos A}{\sin A}=\frac{\sin A}{1-\cos A} $
To do:
We have to prove that \( \frac{1+\cos A}{\sin A}=\frac{\sin A}{1-\cos A} \).
Solution:
We know that,
$\sin ^{2} A+\cos^2 A=1$.......(i)
Therefore,
$\frac{1+\cos A}{\sin A}=\frac{1+\cos A}{\sin A} \times \frac{1-\cos A}{1-\cos A}$ (Multiplying and dividing by $1-\cos A$)
$=\frac{1+\cos A(1-\cos A)}{\sin A(1-\cos A)}$
$=\frac{1^2-\cos^2 A}{\sin A(1-\cos A)}$
$=\frac{\sin^2 A}{\sin A(1-\cos A)}$ [From (i)]
$=\frac{\sin A}{1-\cos A}$
Hence proved.
Advertisements