Prove that the lines joining the middle points of the opposite sides of a quadrilateral and the join of the middle points of its diagonals meet in a point and bisect one another.


To do:

We have to prove that the lines joining the middle points of the opposite sides of a quadrilateral and the join of the middle points of its diagonals meet in a point and bisect one another.

Solution:

Let $A (x_1, y_1), B (x_2, y_2), C (x_3, y_3)$ and $D (x_4, y_4)$ be the vertices of quadrilateral a $ABCD$.


$E$ and $F$ are the mid-points of sides $BC$ and $AD$ respectively.

$G$ and $H$ are the mid-points of diagonals $AC$ and $BD$.

This implies,

The coordinates of \( \mathrm{E} \) are \( (\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}) \)

The coordinates of F are \( (\frac{x_{1}+x_{4}}{2}, \frac{y_{1}+y_{4}}{2}) \)

The coordinates of G are \( \left(\frac{x_{1}+x_{3}}{2}, \frac{y_{1}+y_{3}}{2}\right) \)

The coordinates of \( \mathrm{H} \) are \( \left(\frac{x_{2}+x_{4}}{2}, \frac{y_{2}+y_{4}}{2}\right) \)

\( \mathrm{EF} \) and \( \mathrm{GH} \) intersect each other at \( \mathrm{M} \).

Let \( M \) be the mid-point of \( E F \).

The coordinates of M are \( \left\{\frac{1}{2}\left(\frac{x_{2}+x_{3}}{2}+\frac{x_{1}+x_{4}}{2}\right)\right\}, \left\{\frac{1}{2}\left(\frac{y_{2}+y_{3}}{2}+\frac{y_{1}+y_{4}}{2}\right)\right\} \)

\( =\left(\frac{x_{1}+x_{2}+x_{3}+x_{4}}{2 \times 2}, \frac{y_{1}+y_{2}+y_{3}+y_{4}}{2 \times 2}\right) \)

\( =\left(\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}, \frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}\right) \)......(i)

Let \( M \) be the mid-point of \( \mathrm{GH} \).

The coordinates of \( \mathrm{M} \) are \( \left\{\frac{1}{2}\left(\frac{x_{1}+x_{3}}{2}+ \frac{x_{2}+x_{4}}{2}\right)\right\}, \left\{\frac{1}{2}\left(\frac{y_{1}+y_{3}}{2}+ \frac{y_{2}+y_{4}}{2}\right)\right\} \)

\( = \left(\frac{x_{1}+x_{2}+x_{3}+x_{4}}{.2 \times 2}, \frac{y_{1}+y_{2}+y_{3}+y_{4}}{.2 \times 2}\right) \)

\( =\left(\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}, \frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}\right) \).......(ii)

From (i) and (ii),

EF and GH bisect each other at \( \mathrm{M} \).

Hence proved.

Tutorialspoint
Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

32 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements