- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# Using converse of B.P.T., prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side.

To do:

Using converse of B.P.T., we have to prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side.

Solution:

Let in a $\triangle ABC$, $D$ be the mid-point of $AB$.

In $\triangle ABC$,

This implies,

$\frac{AD}{DB}=1$.........(i)

$\frac{AE}{EC}=1$........(ii)

Therefore,

$\frac{AD}{DB}=\frac{AE}{EC}$

This implies, by converse of B.P.T.,

$DE \| BC$

Hence proved.

Advertisements

To Continue Learning Please Login

Login with Google