- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove that$ \frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}=1 $
Given:
\( \frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}=1 \)
To do:
We have to prove that \( \frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}=1 \).
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
LHS $=\frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}$
$=\frac{1}{x^{b-b}+x^{a-b}}+\frac{1}{x^{a-a}+x^{b-a}}$ [Substitute $1=x^{b-b}$ and $1=x^{a-a}$]
$=\frac{1}{x^{-b}(x^{b}+x^{a})}+\frac{1}{x^{-a}(x^{a}+x^{b})}$
$=\frac{x^{b}}{x^{a}+x^{b}}+\frac{x^{a}}{x^{a}+x^{b}}$
$=\frac{x^{b}+x^{a}}{(x^{a}+x^{b})}$
$=\frac{x^{a}+x^{b}}{(x^{a}+x^{b})}$
$=1$
$=$ RHS
Hence proved.
- Related Articles
- Prove that\( \frac{1}{1+x^{b-a}+x^{c-a}}+\frac{1}{1+x^{a-b}+x^{c-b}}+\frac{1}{1+x^{b-c}+x^{a-c}}=1 \)
- Show that:\( \frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}=1 \)
- Show that:\( \left(x^{\frac{1}{a-b}}\right)^{\frac{1}{a-c}}\left(x^{\frac{1}{b-c}}\right)^{\frac{1}{b-a}}\left(x^{\frac{1}{c-a}}\right)^{\frac{1}{c-b}}=1 \)
- Prove that \( \frac{a^{-1}}{a^{-1}+b^{-1}}+\frac{a^{-1}}{a^{-1}-b^{-1}}=\frac{2 b^{2}}{b^{2}-a^{2}} \)
- Prove that\( \left(a^{-1}+b^{-1}\right)^{-1}=\frac{a b}{a+b} \)
- If \( a b c=1 \), show that \( \frac{1}{1+a+b^{-1}}+\frac{1}{1+b+c^{-1}}+\frac{1}{1+c+a^{-1}}=1 \)
- Prove that\( \frac{a+b+c}{a^{-1} b^{-1}+b^{-1} c^{-1}+c^{-1} a^{-1}}=a b c \)
- Solve the following:If $x^{2}+\frac{1}{x^{2}}=3,$ find a) $ x-\frac{1}{x}$b) $x+\frac{1}{x} $
- Prove that the points $(a, 0), (0, b)$ and $(1, 1)$ are collinear if, $\frac{1}{a} + \frac{1}{b} = 1$.
- If \( x^{2}+\frac{1}{x^{2}}=62 \), find the value of(a) \( x+\frac{1}{x} \)(b) \( x-\frac{1}{x} \)
- Show that:\( \left\{\left(x^{a-a^{-1}}\right)^{\frac{1}{a-1}}\right\}^{\frac{a}{a+1}}=x \)
- Solve the following for x; $\frac{1}{2a+b+2x} =\frac{1}{2a} +\frac{1}{b} +\frac{1}{2x}$.
- Simplify the following:$\frac{x^{-1}+y^{-1}}{x^{-1}}+\frac{x^{-1}-y^{-1}}{x^{-1}}$
- If \( x+\frac{1}{x}=11 \), find the value of(a) \( x^{2}+\frac{1}{x^{2}} \)(b) \( x^{4}+\frac{1}{x^{4}} \)
- If \( x-\frac{1}{x}=5 \), find the value of(a) \( x^{2}+\frac{1}{x^{2}} \)(b) \( x^{4}+\frac{1}{x^{4}} \)

Advertisements